空間兩個向量的數(shù)量積_第1頁
空間兩個向量的數(shù)量積_第2頁
空間兩個向量的數(shù)量積_第3頁
空間兩個向量的數(shù)量積_第4頁
空間兩個向量的數(shù)量積_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

9.5.4空間兩個向量的數(shù)量積教學目標:知識目標

1.使學生理解空間兩個向量數(shù)量積的意義2.使學生理解一個向量在另一個向量方向上的正射影能力目標

1.使學生能夠應用兩向量垂直的充要條件證明線線垂直(例1)2.使學生應用空間兩個向量數(shù)量積求空間兩點間的距離(例2)情感目標

培養(yǎng)學生空間想象能力教學重點:空間兩個向量數(shù)量積的意義教學難點:空間一個向量在另一個向量方向上的正射影定義:幾何意義:數(shù)量積等于的長度與在的方向上的投影的乘積.

數(shù)量積的性質:(1)(2)(3)O夾角:數(shù)量積的運算律:(1)(2)(3)AB一.復習“平面向量的數(shù)量積及運算律”并引入新課二.新課講﹑議

1.空間兩向量的夾角空間非零向量a,b,ab在空間任取一點o,O·作OA=a,AOB=b,B則角∠AOB叫做向量a與b的夾角,記作<a,b><a,b>=<b,a>OABab0≤<a,b>≤如果<a,b>=則稱a與b互相垂直,記作a⊥b.設OA=a,則有向線段OA的長度叫做向量a的長度(模),記作2,空間兩向量的垂直3,空間向量的長度(模)4空間兩向量的數(shù)量積當a⊥b時,射影已知向量AB=a和軸l,e是l上與l同方向的單位向量lABeC作點在軸l上的射影

,則是AB在軸l上或在方向上的正射影,簡稱射影作點A在軸I上的射影5空間向量數(shù)量積的性質(1)(2)(3)6空間向量數(shù)量積的運算律(1)(2)(3)例1,已知m,n是平面a內的兩條相交直線,直線l與a的交點為B,且l⊥m,l⊥n

求證:l⊥a證明:在內作不與m,n重合的任一條直線g,在l,m,n,g上取非零向量nmlBg因m與n相交,得向量不平行.由共面向量定理可知,存在唯一的有序實數(shù)對(x,y)使C’A’B’D’ABCD三.學生練習

CABD1,已知線段AB,CD在面內,線段BDAB,線段AC果AB=a,BD=b,AC=c,求C,D間距離.學生解出后答案出示下面內容進行驗證3,已知空間四邊形OABC,OB=OC,AOB=AOC=

求證:OABC,OABC空間向量的數(shù)量積:(證明線線垂直)(求線段的長)(1)(2)(3)(分配律)(交換律)空間向量的數(shù)量積的運算律:四.小結:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論