版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高一數(shù)學考試考試時間120分鐘全卷滿分150分一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知,且是第二象限角,則()A. B. C. D.【答案】A【解析】【分析】根據(jù)各象限三角函數(shù)的符號和同角三角函數(shù)的基本關系進行求值.【詳解】因為是第二象限角,所以.又,,所以.所以.故選:A2.已知集合,則()A. B. C.或 D.【答案】D【解析】【分析】根據(jù)題意,將集合化簡,再由交集的運算,即可得到結果.【詳解】因為,,所以.故選:D3.已知,且,則下列正確的是()A. B.C. D.【答案】B【解析】【分析】作差法得到,結合,得到,故B正確,其他三個選項錯誤.【詳解】∵,∴,∴,又,∴,故,,,,B正確,ACD錯誤.故選:B4.函數(shù)的單調遞減區(qū)間是()A., B.,C., D.,【答案】A【解析】【分析】先變形,再根據(jù)余弦函數(shù)單調性即可求解.【詳解】已知,令,,得,,所以函數(shù)的單調遞減區(qū)間為,.故選:.5.函數(shù)的圖象是()A. B.C. D.【答案】C【解析】【分析】利用排除法及函數(shù)的定義域即可求解.【詳解】由,解得,所以函數(shù)的定義域為,由選項中的圖象知,故C正確.故選:C.6.已知,把的圖象向右平移φ個單位長度后,恰好得到函數(shù)的圖象,則φ的值可以為()A. B. C. D.【答案】D【解析】【分析】先化簡與,再結合函數(shù)圖象的平移求的值.【詳解】因為,.且.所以將y=fx的圖象向左平移個單位可得y=gx的圖象又函數(shù)y=fx與y=gx的周期均為所以將y=fx的圖象向右平移個單位可得y=gx的圖象故選:D7.已知,且,則()A. B.C. D.【答案】C【解析】【分析】切化弦,結合兩角差的正弦及角的范圍即可求解.【詳解】可得即:所以又,,,即.故選:C8.設函數(shù)在上有且只有4個零點,則的取值范圍是()A. B.C. D.【答案】B【解析】【分析】求出的范圍,利用余弦函數(shù)性質列不等式組求解可得.【詳解】,又因為在上有且僅有4個零點,,解得故選:B.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.已知,則()A B.C. D.【答案】ABC【解析】【分析】利用誘導公式判斷A,再利用同角基本關系得出判斷BC,再次利用誘導公式判斷D,從而得解.【詳解】因為,所以,故A正確;,故B正確;,故C正確;,D錯誤.故選:ABC.10.若角是第二象限角,則()A. B.C. D.【答案】ACD【解析】【分析】由角是第二象限角可得,,即可得解.【詳解】若角是第二象限角,則,,則,,故A、C、D正確,B錯誤.故選:ACD.11.若,是方程的兩個根,則下列等式正確的是()A B.C. D.【答案】AD【解析】【分析】由根與系數(shù)的關系結合對數(shù)的運算即可求解.【詳解】由根與系數(shù)的關系,得,,,.故選:.三、填空題12.若角的終邊上有一點,則_________.【答案】【解析】【分析】若角的終邊上有一點,則,其中.【詳解】∵角的終邊上有一點,∴,∴.故答案為:13.已知函數(shù),則________.【答案】9【解析】【分析】由題意令求出即可得解.【詳解】令,則,所以.故答案為:9.14.函數(shù)的最大值為_________.【答案】【解析】【分析】根據(jù)三角恒等式化簡,結合在的值域求最大值即可.【詳解】由于,所以.又函數(shù),所以當時,.故答案為:.四、解答題:解答應寫出文字說明、證明過程或演算步驟.15.已知函數(shù)()的部分圖象如圖所示.(1)求函數(shù)的解析式;(2)求的值.【答案】(1)(2)【解析】【分析】(1)根據(jù)圖象可得,,進而得到,將點代入的解析式可得,進而求解;(2)結合誘導公式直接代值計算【小問1詳解】由圖象知,的最小正周期,故,將點代入的解析式得,又,所以,故函數(shù)的解析式為.【小問2詳解】由(1)知,所以.16.已知函數(shù),當時,函數(shù)在區(qū)間上單調遞減,求實數(shù)的取值范圍.【答案】【解析】【分析】利用余弦函數(shù)的性質確定函數(shù)的單調區(qū)間,借助集合的包含關系即可求解.【詳解】,令,可得:,由可得,由題意可得,解得,所以的取值范圍為.17.已知函數(shù)(常數(shù))為奇函數(shù),函數(shù),(且)(1)求的值;(2)求在上的最大值.【答案】(1)(2)【解析】【分析】(1)由為奇函數(shù)可知,進而可得.(2)對進行分類為和,根據(jù)的單調性進而可得最大值.【小問1詳解】由題意可知,得,可得.【小問2詳解】由(1)可知,故,當時,在上單調遞增,故,當時,在上單調遞減,故所以18.設函數(shù),若函數(shù)的圖象關于直線對稱,且(1)求函數(shù)的單調遞減區(qū)間;(2)求函數(shù)在區(qū)間上最值.【答案】(1)(2)最大值為,最小值為【解析】【分析】(1)利用函數(shù)對稱軸以及可解得,再由正弦函數(shù)單調性可得結果;(2)利用整體代換法,由函數(shù)單調性即可求得函數(shù)在區(qū)間上的最值.【小問1詳解】∵函數(shù)的圖象關于直線對稱,所以,;又,所以時,,因此;令,解得;∴函數(shù)的單調遞減區(qū)間為【小問2詳解】由(1)得,因為,得,,得函數(shù)在區(qū)間上的最大值為,最小值為19.定義域在上的偶函數(shù)滿足:當時,(1)若成立,求實數(shù)m的取值范圍;(2)設函數(shù)若對于任意的都有成立,求實數(shù)a的取值范圍.【答案】(1);(2)【解析】【分析】(1)先研究得出函數(shù)的單調性,進而將不等式轉化為fm2?3m>f4,再由偶函數(shù)性質得,解該不等式即可得解.(2)將“任意的都有成立”等價轉化成gxmin>fxmax,求出和即可計算得解【小問1詳解】易知函數(shù)和在上都是單調遞減函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國硫酸型酸洗緩蝕抑霧劑行業(yè)投資前景及策略咨詢研究報告
- 醫(yī)療設備租賃合同模板集
- 2024至2030年中國指示燈密碼鎖數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國弧形燈箱展架行業(yè)投資前景及策略咨詢研究報告
- 工程砌墻質量驗收合同
- 委托貸款合同
- 2024-2025學年人教高中物理同步講義練習選擇性必修三2.5 液體(含答案) (人教2019選擇性必修三)
- 日式枯山水 施工方案
- 無錫定制冷柜施工方案
- 旋轉型灌裝機 課程設計
- 一年級上冊美術課件-《有趣的勺子》人美版(共28張PPT)
- 常見40種光纜型號圖文詳解
- 英語教學中讓學生當“小老師”的嘗試-精選教育文檔
- 員工勞動合同期滿考核表
- 自動生產(chǎn)線分揀站控制系統(tǒng)設計
- 機械密封工作原理演示版
- 血氣分析全解ppt課件
- 二年級 Thelifeofabutterfly蝴蝶的生長過程
- 導軌式升降平臺使用說明書
- 入網(wǎng)申請表模板
- JJF 1721-2018 碳化深度測量儀和測量尺校準規(guī)范(高清版)
評論
0/150
提交評論