2024屆浙江省寧波效實(shí)中學(xué)高三下學(xué)期5月月考試題數(shù)學(xué)試題試卷_第1頁
2024屆浙江省寧波效實(shí)中學(xué)高三下學(xué)期5月月考試題數(shù)學(xué)試題試卷_第2頁
2024屆浙江省寧波效實(shí)中學(xué)高三下學(xué)期5月月考試題數(shù)學(xué)試題試卷_第3頁
2024屆浙江省寧波效實(shí)中學(xué)高三下學(xué)期5月月考試題數(shù)學(xué)試題試卷_第4頁
2024屆浙江省寧波效實(shí)中學(xué)高三下學(xué)期5月月考試題數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省寧波效實(shí)中學(xué)高三下學(xué)期5月月考試題數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.2.已知函數(shù),要得到函數(shù)的圖象,只需將的圖象()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.已知三棱柱()A. B. C. D.4.若函數(shù)在時(shí)取得極值,則()A. B. C. D.5.關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),某同學(xué)通過下面的隨機(jī)模擬方法來估計(jì)的值:先用計(jì)算機(jī)產(chǎn)生個(gè)數(shù)對(duì),其中,都是區(qū)間上的均勻隨機(jī)數(shù),再統(tǒng)計(jì),能與構(gòu)成銳角三角形三邊長(zhǎng)的數(shù)對(duì)的個(gè)數(shù)﹔最后根據(jù)統(tǒng)計(jì)數(shù)來估計(jì)的值.若,則的估計(jì)值為()A. B. C. D.6.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.7.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.9.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.10.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.11.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i12.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-5二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,且.若任意,成立,則實(shí)數(shù)的取值范圍為__________.14.若實(shí)數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標(biāo)函數(shù)15.已知隨機(jī)變量服從正態(tài)分布,,則__________.16.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓C的長(zhǎng)軸長(zhǎng)為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.18.(12分)已知?jiǎng)訄A過定點(diǎn),且與直線相切,動(dòng)圓圓心的軌跡為,過作斜率為的直線與交于兩點(diǎn),過分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).(1)證明:點(diǎn)始終在直線上且;(2)求四邊形的面積的最小值.19.(12分)某公司打算引進(jìn)一臺(tái)設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺(tái)10000元,乙設(shè)備每臺(tái)9000元.此外設(shè)備使用期間還需維修,對(duì)于每臺(tái)設(shè)備,一年間三次及三次以內(nèi)免費(fèi)維修,三次以外的維修費(fèi)用均為每次1000元.該公司統(tǒng)計(jì)了曾使用過的甲、乙各50臺(tái)設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺(tái)中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺(tái)購買和一年間維修的花費(fèi)總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費(fèi)總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請(qǐng)說明理由.20.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.21.(12分)已知中,角,,的對(duì)邊分別為,,,已知向量,且.(1)求角的大小;(2)若的面積為,,求.22.(10分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱,定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).2、A【解析】

根據(jù)函數(shù)圖像平移原則,即可容易求得結(jié)果.【詳解】因?yàn)?,故要得到,只需將向左平移個(gè)單位長(zhǎng)度.故選:A.【點(diǎn)睛】本題考查函數(shù)圖像平移前后解析式的變化,屬基礎(chǔ)題.3、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線長(zhǎng)即為球直徑,所以2R==13,即R=4、D【解析】

對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在時(shí)取得極值,得到,即可求出結(jié)果.【詳解】因?yàn)?,所以,又函?shù)在時(shí)取得極值,所以,解得.故選D【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.5、B【解析】

先利用幾何概型的概率計(jì)算公式算出,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,然后再利用隨機(jī)模擬方法得到,能與構(gòu)成銳角三角形三邊長(zhǎng)的概率,二者概率相等即可估計(jì)出.【詳解】因?yàn)?,都是區(qū)間上的均勻隨機(jī)數(shù),所以有,,若,能與構(gòu)成銳角三角形三邊長(zhǎng),則,由幾何概型的概率計(jì)算公式知,所以.故選:B.【點(diǎn)睛】本題考查幾何概型的概率計(jì)算公式及運(yùn)用隨機(jī)數(shù)模擬法估計(jì)概率,考查學(xué)生的基本計(jì)算能力,是一個(gè)中檔題.6、A【解析】

由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.7、D【解析】

先化簡(jiǎn),再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、D【解析】

利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因?yàn)?,?dāng)時(shí),,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、D【解析】

由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.10、A【解析】

先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.11、B【解析】分析:化簡(jiǎn)已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡(jiǎn)可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.12、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當(dāng)時(shí),,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時(shí),,則,,當(dāng)時(shí),,,,,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,故答案為:.【點(diǎn)睛】本題主要考查已知求,累乘法,主要考查計(jì)算能力,屬于中檔題.14、12【解析】

畫出約束條件的可行域,求出最優(yōu)解,即可求解目標(biāo)函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標(biāo)函數(shù)y=3x-z,當(dāng)y=3x-z過點(diǎn)(4,0)時(shí),z有最大值,且最大值為12.故答案為:12.【點(diǎn)睛】本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.15、0.22.【解析】

正態(tài)曲線關(guān)于x=μ對(duì)稱,根據(jù)對(duì)稱性以及概率和為1求解即可。【詳解】【點(diǎn)睛】本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,是一個(gè)基礎(chǔ)題.16、.【解析】

當(dāng)q=1時(shí),.當(dāng)時(shí),,所以.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.【解析】

(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長(zhǎng)軸長(zhǎng)為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實(shí)數(shù)使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn).設(shè)點(diǎn),,,,將直線的方程代入,化簡(jiǎn),利用韋達(dá)定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:.求解即可.【詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.理由如下:設(shè)點(diǎn),,將直線的方程代入,并整理,得.(*)則,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O,所以,即.又,于是,解得,經(jīng)檢驗(yàn)知:此時(shí)(*)式的,符合題意.所以當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O【點(diǎn)睛】本題考查橢圓方程的求法,橢圓的簡(jiǎn)單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.18、(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點(diǎn)的坐標(biāo),利用導(dǎo)數(shù)求得切線的方程,由此求得點(diǎn)的坐標(biāo).寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達(dá)定理求得點(diǎn)的坐標(biāo),并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達(dá)式,求得的表達(dá)式,由此求得四邊形的面積的表達(dá)式進(jìn)而求得四邊形的面積的最小值.【詳解】(1)∵動(dòng)圓過定點(diǎn),且與直線相切,∴動(dòng)圓圓心到定點(diǎn)和定直線的距離相等,∴動(dòng)圓圓心的軌跡是以為焦點(diǎn)的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點(diǎn)始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當(dāng)且僅當(dāng)或,即時(shí)取等號(hào),∴四邊形的面積的最小值為1.【點(diǎn)睛】本小題主要考查動(dòng)點(diǎn)軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計(jì)算,考查運(yùn)算求解能力,屬于中檔題.19、(1)分布列見解析,分布列見解析;(2)甲設(shè)備,理由見解析【解析】

(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計(jì)算概率得到分布列;(2)計(jì)算期望,得到,設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,,計(jì)算分布列,計(jì)算數(shù)學(xué)期望得到答案.【詳解】(1)的可能取值為10000,11000,12000,,因此的分布如下100001100012000的可能取值為9000,10000,11000,12000,,,因此的分布列為如下9000100001100012000(2)設(shè)甲、乙兩設(shè)備一年內(nèi)的維修次數(shù)分別為,的可能取值為2,3,4,5,,,則的分布列為2345的可能取值為3,4,5,6,,,則的分布列為3456由于,,因此需購買甲設(shè)備【點(diǎn)睛】本題考查了數(shù)學(xué)期望和分布列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進(jìn)而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因?yàn)?,所以,由正弦定理,得.又因?yàn)?,,所以.又因?yàn)?,所以.(II)由,得,由余弦定理,得,即,因?yàn)?,解?因?yàn)椋?21、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.22、(1)(2)【解析】

(1)當(dāng)時(shí),,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論