2023-2024學年四川省華鎣一中高三3月第一次高考模擬數(shù)學試題_第1頁
2023-2024學年四川省華鎣一中高三3月第一次高考模擬數(shù)學試題_第2頁
2023-2024學年四川省華鎣一中高三3月第一次高考模擬數(shù)學試題_第3頁
2023-2024學年四川省華鎣一中高三3月第一次高考模擬數(shù)學試題_第4頁
2023-2024學年四川省華鎣一中高三3月第一次高考模擬數(shù)學試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年四川省華鎣一中高三3月第一次高考模擬數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②2.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()3.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.如圖,在中,,是上一點,若,則實數(shù)的值為()A. B. C. D.5.若點是角的終邊上一點,則()A. B. C. D.6.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.7.函數(shù)的部分圖象大致是()A. B.C. D.8.下列四個結論中正確的個數(shù)是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.49.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.10.將函數(shù)的圖象分別向右平移個單位長度與向左平移(>0)個單位長度,若所得到的兩個圖象重合,則的最小值為()A. B. C. D.11.已知橢圓,直線與直線相交于點,且點在橢圓內恒成立,則橢圓的離心率取值范圍為()A. B. C. D.12.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式組所表示的平面區(qū)域為,則區(qū)域的外接圓的面積為______.14.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調遞增,則的最大值為________.15.已知函數(shù)有兩個極值點、,則的取值范圍為_________.16.點到直線的距離為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.18.(12分)已知函數(shù)的導函數(shù)的兩個零點為和.(1)求的單調區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.19.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.20.(12分)某客戶準備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯(lián)安裝,再與一級過濾器串聯(lián)安裝.其中每一級過濾都由核心部件濾芯來實現(xiàn)在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統(tǒng)的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時購買濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內更換濾芯的相關數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個一級過濾器更換的濾芯個數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個二級過濾器更換的濾芯個數(shù)制成的條形圖.表1:一級濾芯更換頻數(shù)分布表一級濾芯更換的個數(shù)89頻數(shù)6040圖2:二級濾芯更換頻數(shù)條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發(fā)生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發(fā)生的概率.(1)求一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16的概率;(2)記表示該客戶的凈水系統(tǒng)在使用期內需要更換的二級濾芯總數(shù),求的分布列及數(shù)學期望;(3)記分別表示該客戶在安裝凈水系統(tǒng)的同時購買的一級濾芯和二級濾芯的個數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內購買各級濾芯所需總費用的期望值為決策依據(jù),試確定的值.21.(12分)已知函數(shù).(Ⅰ)已知是的一個極值點,求曲線在處的切線方程(Ⅱ)討論關于的方程根的個數(shù).22.(10分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.2.B【解析】

如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.3.B【解析】

利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據(jù)系數(shù)關系來考慮,后者依據(jù)兩個條件之間的推出關系,本題屬于中檔題.4.C【解析】

由題意,可根據(jù)向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關鍵,本題屬于基礎題.5.A【解析】

根據(jù)三角函數(shù)的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據(jù)三角函數(shù)的定義,可得,則,故選A.【點睛】本題主要考查了三角函數(shù)的定義和正弦的倍角公式的化簡、求值,其中解答中根據(jù)三角函數(shù)的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6.B【解析】

設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.7.C【解析】

判斷函數(shù)的性質,和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.8.C【解析】

由題意,(1)中,根據(jù)全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據(jù)正態(tài)分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據(jù)全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.9.C【解析】

利用先求出,然后計算出結果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結果,較為基礎.10.B【解析】

首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個單位長度后,所得的兩個圖像重合,那么,利用的最小正周期為,從而求得結果.【詳解】的最小正周期為,那么(∈),于是,于是當時,最小值為,故選B.【點睛】該題考查的是有關三角函數(shù)的周期與函數(shù)圖象平移之間的關系,屬于簡單題目.11.A【解析】

先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內列不等式,化簡后求得離心率的取值范圍.【詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.12.B【解析】

根據(jù)分段函數(shù)表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點睛】線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.14.【解析】

直接計算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當時,,故,解得.故答案為:;.【點睛】本題考查了三角函數(shù)的周期和單調性,意在考查學生對于三角函數(shù)知識的綜合應用.15.【解析】

確定函數(shù)的定義域,求導函數(shù),利用極值的定義,建立方程,結合韋達定理,即可求的取值范圍.【詳解】函數(shù)的定義域為,,依題意,方程有兩個不等的正根、(其中),則,由韋達定理得,,所以,令,則,,當時,,則函數(shù)在上單調遞減,則,所以,函數(shù)在上單調遞減,所以,.因此,的取值范圍是.故答案為:.【點睛】本題考查了函數(shù)極值點問題,考查了函數(shù)的單調性、最值,將的取值范圍轉化為以為自變量的函數(shù)的值域問題是解答的關鍵,考查計算能力,屬于中等題.16.2【解析】

直接根據(jù)點到直線的距離公式即可求出?!驹斀狻恳罁?jù)點到直線的距離公式,點到直線的距離為?!军c睛】本題主要考查點到直線的距離公式的應用。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.【點睛】本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.18.(1)單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)最大值是.【解析】

(1)求得,由題意可知和是函數(shù)的兩個零點,根據(jù)函數(shù)的符號變化可得出的符號變化,進而可得出函數(shù)的單調遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結論知,函數(shù)的極小值為,進而得出,解出、、的值,然后利用導數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數(shù)的單調遞增區(qū)間是,單調遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【點睛】本題考查利用導數(shù)求函數(shù)的單調區(qū)間與最值,考查計算能力,屬于中等題.19.(1)見解析(2)見解析【解析】

(1)利用導函數(shù)的正負確定函數(shù)的增減.(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導確定函數(shù)單調性證明參數(shù)范圍.【詳解】解:(1)證明:因為,當時,,,所以在區(qū)間遞減;當時,,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令,則令,則,所以在單調遞增,又,故存在唯一的,使得,即,所以在單調遞減,在區(qū)間單調遞增,且,又因為,所以,方程關于的方程在有兩個零點,由的圖象可知,,即.【點睛】本題考查利用導數(shù)研究函數(shù)單調性,確定函數(shù)的極值,利用二次求導,零點存在性定理確定參數(shù)范圍,屬于難題.20.(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數(shù)分布表和二級濾芯更換頻數(shù)條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數(shù)條形圖可知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數(shù)學期望;(3)由,且,可知若,則,或若,則,再分別計算兩種情況下的所需總費用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16,則該套凈水系統(tǒng)中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設“一套凈水系統(tǒng)在使用期內需要更換的各級濾芯總個數(shù)恰好為16”為事件,因為一個一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數(shù)為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個).或用分數(shù)表示也可以為89101112(個).(3)解法一:記表示該客戶的凈水系統(tǒng)在使用期內購買各級濾芯所需總費用(單位:元)因為,且,1°若,則,(元);2°若,則,(元).因為,故選擇方案:.解法二:記分別表示該客戶的凈水系統(tǒng)在使用期內購買一級濾芯和二級濾芯所需費用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統(tǒng)在使用期內購買的各級濾芯所需總費用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因為所以選擇方案:.【點睛】此題考查離散型隨機變量的分布列、數(shù)學期望的求法及應用,考查古典概型,考查運算求解能力,屬于中檔題.21.(Ⅰ);(Ⅱ)見解析【解析】

(Ⅰ)求函數(shù)的導數(shù),利用x=2是f(x)的一個極值點,得f'(2)=0建立方程求出a的值,結合導數(shù)的幾何意義進行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構造函數(shù)求出函數(shù)的導數(shù)研究函數(shù)的單調性和最值,利用數(shù)形結合轉化為圖象交點個數(shù)進行求解即可.【詳解】(Ⅰ)因為,則,因為是的一個極值點,所以,即,所以,因為,,則直線方程為,即;(Ⅱ)因為,所以,所以,設,則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設,則,所以在上是減函數(shù),上是增函數(shù),所以,所以當時,,函數(shù)在是減函數(shù),當時,,函數(shù)在是增函數(shù),因為時,,,,所以當時,方程無實數(shù)根,當時,方程有兩個不相等實數(shù)根,當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論