初中幾何輔助線大全(很詳細(xì)哦)_第1頁
初中幾何輔助線大全(很詳細(xì)哦)_第2頁
初中幾何輔助線大全(很詳細(xì)哦)_第3頁
初中幾何輔助線大全(很詳細(xì)哦)_第4頁
初中幾何輔助線大全(很詳細(xì)哦)_第5頁
已閱讀5頁,還剩67頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第頁衡水中學(xué)★內(nèi)部絕密資料初中幾何輔助線—克勝秘籍等腰三角形1.作底邊上的高,構(gòu)成兩個全等的直角三角形,這是用得最多的一種方法;

2.作一腰上的高;3.過底邊的一個端點作底邊的垂線,與另一腰的延長線相交,構(gòu)成直角三角形。梯形1.垂直于平行邊2.垂直于下底,延長上底作一腰的平行線3.平行于兩條斜邊4.作兩條垂直于下底的垂線5.延長兩條斜邊做成一個三角形菱形1.連接兩對角2.做高平行四邊形1.垂直于平行邊2.作對角線——把一個平行四邊形分成兩個三角形3.做高——形內(nèi)形外都要注意

矩形1.對角線2.作垂線很簡單。無論什么題目,第一位應(yīng)該考慮到題目要求,比如AB=AC+BD這類的就是想辦法作出另一條AB等長的線段,再證全等說明AC+BD=另一條AB,就好了。還有一些關(guān)于平方的考慮勾股,A字形等。三角形

圖中有角平分線,可向兩邊作垂線(垂線段相等)。

也可將圖對折看,對稱以后關(guān)系現(xiàn)。

角平分線平行線,等腰三角形來添。

角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。

三角形中兩中點,連接則成中位線。

三角形中有中線,延長中線等中線。

解幾何題時如何畫輔助線?①見中點引中位線,見中線延長一倍

在幾何題中,如果給出中點或中線,可以考慮過中點作中位線或把中線延長一倍來解決相關(guān)問題。②在比例線段證明中,常作平行線。

作平行線時往往是保留結(jié)論中的一個比,然后通過一個中間比與結(jié)論中的另一個比聯(lián)系起來。③對于梯形問題,常用的添加輔助線的方法有

1、過上底的兩端點向下底作垂線

2、過上底的一個端點作一腰的平行線

3、過上底的一個端點作一對角線的平行線

4、過一腰的中點作另一腰的平行線

5、過上底一端點和一腰中點的直線與下底的延長線相交

6、作梯形的中位線

7、延長兩腰使之相交四邊形

平行四邊形出現(xiàn),對稱中心等分點。

梯形里面作高線,平移一腰試試看。

平行移動對角線,補成三角形常見。

證相似,比線段,添線平行成習(xí)慣。

等積式子比例換,尋找線段很關(guān)鍵。

直接證明有困難,等量代換少麻煩。

斜邊上面作高線初中數(shù)學(xué)輔助線的添加淺談人們從來就是用自己的聰明才智創(chuàng)造條件解決問題的,當(dāng)問題的條件不夠時,添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中,建立已知與未知的橋梁,把問題轉(zhuǎn)化為自己能解決的問題,這是解決問題常用的策略。一.添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。2按基本圖形添輔助線:每個幾何定理都有與它相對應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時補完整基本圖形,因此“添線”應(yīng)該叫做“補圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循。舉例如下:(1)平行線是個基本圖形:當(dāng)幾何中出現(xiàn)平行線時添輔助線的關(guān)鍵是添與二條平行線都相交的等第三條直線(2)等腰三角形是個簡單的基本圖形:當(dāng)幾何問題中出現(xiàn)一點發(fā)出的二條相等線段時往往要補完整等腰三角形。出現(xiàn)角平分線與平行線組合時可延長平行線與角的二邊相交得等腰三角形。(3)等腰三角形中的重要線段是個重要的基本圖形:出現(xiàn)等腰三角形底邊上的中點添底邊上的中線;出現(xiàn)角平分線與垂線組合時可延長垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。(4)直角三角形斜邊上中線基本圖形出現(xiàn)直角三角形斜邊上的中點往往添斜邊上的中線。出現(xiàn)線段倍半關(guān)系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。(5)三角形中位線基本圖形幾何問題中出現(xiàn)多個中點時往往添加三角形中位線基本圖形進行證明當(dāng)有中點沒有中位線時則添中位線,當(dāng)有中位線三角形不完整時則需補完整三角形;當(dāng)出現(xiàn)線段倍半關(guān)系且與倍線段有公共端點的線段帶一個中點則可過這中點添倍線段的平行線得三角形中位線基本圖形;當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點是某線段的中點,則可過帶中點線段的端點添半線段的平行線得三角形中位線基本圖形。(6)全等三角形:全等三角形有軸對稱形,中心對稱形,旋轉(zhuǎn)形與平移形等;如果出現(xiàn)兩條相等線段或兩個檔相等角關(guān)于某一直線成軸對稱就可以添加軸對稱形全等三角形:或添對稱軸,或?qū)⑷切窝貙ΨQ軸翻轉(zhuǎn)。當(dāng)幾何問題中出現(xiàn)一組或兩組相等線段位于一組對頂角兩邊且成一直線時可添加中心對稱形全等三角形加以證明,添加方法是將四個端點兩兩連結(jié)或過二端點添平行線(8)特殊角直角三角形當(dāng)出現(xiàn)30,45,60,135,150度特殊角時可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:√2;30度角直角三角形三邊比為1:2:√3進行證明二.基本圖形的輔助線的畫法1.三角形問題添加輔助線方法方法1:有關(guān)三角形中線的題目,常將中線加倍。含有中點的題目,常常利用三角形的中位線,通過這種方法,把要證的結(jié)論恰當(dāng)?shù)霓D(zhuǎn)移,很容易地解決了問題。方法2:含有平分線的題目,常以角平分線為對稱軸,利用角平分線的性質(zhì)和題中的條件,構(gòu)造出全等三角形,從而利用全等三角形的知識解決問題。方法3:結(jié)論是兩線段相等的題目常畫輔助線構(gòu)成全等三角形,或利用關(guān)于平分線段的一些定理。方法4:結(jié)論是一條線段與另一條線段之和等于第三條線段這類題目,常采用截長法或補短法,所謂截長法就是把第三條線段分成兩部分,證其中的一部分等于第一條線段,而另一部分等于第二條線段。2.平行四邊形中常用輔助線的添法平行四邊形(包括矩形、正方形、菱形)的兩組對邊、對角和對角線都具有某些相同性質(zhì),所以在添輔助線方法上也有共同之處,目的都是造就線段的平行、垂直,構(gòu)成三角形的全等、相似,把平行四邊形問題轉(zhuǎn)化成常見的三角形、正方形等問題處理,其常用方法有下列幾種,舉例簡解如下:(1)連對角線或平移對角線:(2)過頂點作對邊的垂線構(gòu)造直角三角形(3)連接對角線交點與一邊中點,或過對角線交點作一邊的平行線,構(gòu)造線段平行或中位線(4)連接頂點與對邊上一點的線段或延長這條線段,構(gòu)造三角形相似或等積三角形。(5)過頂點作對角線的垂線,構(gòu)成線段平行或三角形全等.3.梯形中常用輔助線的添法梯形是一種特殊的四邊形。它是平行四邊形、三角形知識的綜合,通過添加適當(dāng)?shù)妮o助線將梯形問題化歸為平行四邊形問題或三角形問題來解決。輔助線的添加成為問題解決的橋梁,梯形中常用到的輔助線有:(1)在梯形內(nèi)部平移一腰。(2)梯形外平移一腰(3)梯形內(nèi)平移兩腰(4)延長兩腰(5)過梯形上底的兩端點向下底作高(6)平移對角線(7)連接梯形一頂點及一腰的中點。(8)過一腰的中點作另一腰的平行線。(9)作中位線當(dāng)然在梯形的有關(guān)證明和計算中,添加的輔助線并不一定是固定不變的、單一的。通過輔助線這座橋梁,將梯形問題化歸為平行四邊形問題或三角形問題來解決,這是解決問題的關(guān)鍵。作輔助線的方法一:中點、中位線,延線,平行線。如遇條件中有中點,中線、中位線等,那么過中點,延長中線或中位線作輔助線,使延長的某一段等于中線或中位線;另一種輔助線是過中點作已知邊或線段的平行線,以達(dá)到應(yīng)用某個定理或造成全等的目的。二:垂線、分角線,翻轉(zhuǎn)全等連。如遇條件中,有垂線或角的平分線,可以把圖形按軸對稱的方法,并借助其他條件,而旋轉(zhuǎn)180度,得到全等形,,這時輔助線的做法就會應(yīng)運而生。其對稱軸往往是垂線或角的平分線。三:邊邊若相等,旋轉(zhuǎn)做實驗。如遇條件中有多邊形的兩邊相等或兩角相等,有時邊角互相配合,然后把圖形旋轉(zhuǎn)一定的角度,就可以得到全等形,這時輔助線的做法仍會應(yīng)運而生。其對稱中心,因題而異,有時沒有中心。故可分“有心”和“無心”旋轉(zhuǎn)兩種。四:造角、平、相似,和、差、積、商見。如遇條件中有多邊形的兩邊相等或兩角相等,欲證線段或角的和差積商,往往與相似形有關(guān)。在制造兩個三角形相似時,一般地,有兩種方法:第一,造一個輔助角等于已知角;第二,是把三角形中的某一線段進行平移。故作歌訣:“造角、平、相似,和差積商見?!蓖辛忻锥ɡ砗兔啡~勞定理的證明輔助線分別是造角和平移的代表)九:面積找底高,多邊變?nèi)?。如遇求面積,(在條件和結(jié)論中出現(xiàn)線段的平方、乘積,仍可視為求面積),往往作底或高為輔助線,而兩三角形的等底或等高是思考的關(guān)鍵。如遇多邊形,想法割補成三角形;反之,亦成立。另外,我國明清數(shù)學(xué)家用面積證明勾股定理,其輔助線的做法,即“割補”有二百多種,大多數(shù)為“面積找底高,多邊變?nèi)叀薄H切沃凶鬏o助線的常用方法舉例一、在利用三角形三邊關(guān)系證明線段不等關(guān)系時,若直接證不出來,可連接兩點或延長某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個或幾個三角形中,再運用三角形三邊的不等關(guān)系證明,如:例1:已知如圖1-1:D、E為△ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.證明:(法一)將DE兩邊延長分別交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:)如圖1-2,延長BD交AC于F,延長CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF

(三角形兩邊之和大于第三邊)(1)GF+FC>GE+CE(同上)………………(2)DG+GE>DE(同上)……(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。二、在利用三角形的外角大于任何和它不相鄰的內(nèi)角時如直接證不出來時,可連接兩點或延長某邊,構(gòu)造三角形,使求證的大角在某個三角形的外角的位置上,小角處于這個三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1:已知D為△ABC內(nèi)的任一點,求證:∠BDC>∠BAC。分析:因為∠BDC與∠BAC不在同一個三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;證法一:延長BD交AC于點E,這時∠BDC是△EDC的外角,∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC證法二:連接AD,并延長交BC于F∵∠BDF是△ABD的外角∴∠BDF>∠BAD,同理,∠CDF>∠CAD∴∠BDF+∠CDF>∠BAD+∠CAD即:∠BDC>∠BAC。注意:利用三角形外角定理證明不等關(guān)系時,通常將大角放在某三角形的外角位置上,小角放在這個三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。三、有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1:已知AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。分析:要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對應(yīng)邊相等,把EN,F(xiàn)N,EF移到同一個三角形中。證明:在DA上截取DN=DB,連接NE,NF,則DN=DC,在△DBE和△DNE中:∵∴△DBE≌△DNE(SAS)∴BE=NE(全等三角形對應(yīng)邊相等)同理可得:CF=NF在△EFN中EN+FN>EF(三角形兩邊之和大于第三邊)∴BE+CF>EF。注意:當(dāng)證題有角平分線時,??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的性質(zhì)得到對應(yīng)元素相等。四、有以線段中點為端點的線段時,常延長加倍此線段,構(gòu)造全等三角形。例如:如圖4-1:AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF證明:延長ED至M,使DM=DE,連接CM,MF。在△BDE和△CDM中,∵∴△BDE≌△CDM(SAS)又∵∠1=∠2,∠3=∠4(已知)∠1+∠2+∠3+∠4=180°(平角的定義)∴∠3+∠2=90°,即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中∵∴△EDF≌△MDF(SAS)∴EF=MF(全等三角形對應(yīng)邊相等)∵在△CMF中,CF+CM>MF(三角形兩邊之和大于第三邊)∴BE+CF>EF注:上題也可加倍FD,證法同上。注意:當(dāng)涉及到有以線段中點為端點的線段時,可通過延長加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。五、有三角形中線時,常延長加倍中線,構(gòu)造全等三角形。例如:如圖5-1:AD為△ABC的中線,求證:AB+AC>2AD。分析:要證AB+AC>2AD,由圖想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左邊比要證結(jié)論多BD+CD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線,把所要證的線段轉(zhuǎn)移到同一個三角形中去。證明:延長AD至E,使DE=AD,連接BE,則AE=2AD∵AD為△ABC的中線(已知)∴BD=CD(中線定義)在△ACD和△EBD中∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形對應(yīng)邊相等)∵在△ABE中有:AB+BE>AE(三角形兩邊之和大于第三邊)∴AB+AC>2AD。(常延長中線加倍,構(gòu)造全等三角形)練習(xí):已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向形外作等腰直角三角形,如圖5-2,求證EF=2AD。六、截長補短法作輔助線。例如:已知如圖6-1:在△ABC中,AB>AC,∠1=∠2,P為AD上任一點。求證:AB-AC>PB-PC。分析:要證:AB-AC>PB-PC,想到利用三角形三邊關(guān)系定理證之,因為欲證的是線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再連接PN,則PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB-PC。證明:(截長法)在AB上截取AN=AC連接PN,在△APN和△APC中∵∴△APN≌△APC(SAS)∴PC=PN(全等三角形對應(yīng)邊相等)∵在△BPN中,有PB-PN<BN(三角形兩邊之差小于第三邊)∴BP-PC<AB-AC證明:(補短法)延長AC至M,使AM=AB,連接PM,在△ABP和△AMP中∵∴△ABP≌△AMP(SAS)∴PB=PM(全等三角形對應(yīng)邊相等)又∵在△PCM中有:CM>PM-PC(三角形兩邊之差小于第三邊)∴AB-AC>PB-PC。七、延長已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無法證全等,差角的相等,因此可設(shè)法作出新的角,且讓此角作為兩個三角形的公共角。證明:分別延長DA,CB,它們的延長交于E點,∵AD⊥ACBC⊥BD(已知)∴∠CAE=∠DBE=90°(垂直的定義)在△DBE與△CAE中∵∴△DBE≌△CAE(AAS)∴ED=ECEB=EA(全等三角形對應(yīng)邊相等)∴ED-EA=EC-EB即:AD=BC。(當(dāng)條件不足時,可通過添加輔助線得出新的條件,為證題創(chuàng)造條件。)八、連接四邊形的對角線,把四邊形的問題轉(zhuǎn)化成為三角形來解決。例如:如圖8-1:AB∥CD,AD∥BC求證:AB=CD。分析:圖為四邊形,我們只學(xué)了三角形的有關(guān)知識,必須把它轉(zhuǎn)化為三角形來解決。證明:連接AC(或BD)∵AB∥CDAD∥BC(已知)∴∠1=∠2,∠3=∠4(兩直線平行,內(nèi)錯角相等)在△ABC與△CDA中∵∴△ABC≌△CDA(ASA)∴AB=CD(全等三角形對應(yīng)邊相等)九、有和角平分線垂直的線段時,通常把這條線段延長。例如:如圖9-1:在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延長于E。求證:BD=2CE分析:要證BD=2CE,想到要構(gòu)造線段2CE,同時CE與∠ABC的平分線垂直,想到要將其延長。證明:分別延長BA,CE交于點F。∵BE⊥CF(已知)∴∠BEF=∠BEC=90°(垂直的定義)在△BEF與△BEC中,∵∴△BEF≌△BEC(ASA)∴CE=FE=CF(全等三角形對應(yīng)邊相等)∵∠BAC=90°BE⊥CF(已知)∴∠BAC=∠CAF=90°∠1+∠BDA=90°∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD與△ACF中∴△ABD≌△ACF(AAS)∴BD=CF(全等三角形對應(yīng)邊相等)∴BD=2CE十、連接已知點,構(gòu)造全等三角形。例如:已知:如圖10-1;AC、BD相交于O點,且AB=DC,AC=BD,求證:∠A=∠D。分析:要證∠A=∠D,可證它們所在的三角形△ABO和△DCO全等,而只有AB=DC和對頂角兩個條件,差一個條件,,難以證其全等,只有另尋其它的三角形全等,由AB=DC,AC=BD,若連接BC,則△ABC和△DCB全等,所以,證得∠A=∠D。證明:連接BC,在△ABC和△DCB中∵∴△ABC≌△DCB(SSS)∴∠A=∠D(全等三角形對應(yīng)邊相等)十一、取線段中點構(gòu)造全等三有形。例如:如圖11-1:AB=DC,∠A=∠D求證:∠ABC=∠DCB。分析:由AB=DC,∠A=∠D,想到如取AD的中點N,連接NB,NC,再由SAS公理有△ABN≌△DCN,故BN=CN,∠ABN=∠DCN。下面只需證∠NBC=∠NCB,再取BC的中點M,連接MN,則由SSS公理有△NBM≌△NCM,所以∠NBC=∠NCB。問題得證。證明:取AD,BC的中點N、M,連接NB,NM,NC。則AN=DN,BM=CM,在△ABN和△DCN中∵∴△ABN≌△DCN(SAS)∴∠ABN=∠DCNNB=NC(全等三角形對應(yīng)邊、角相等)在△NBM與△NCM中∵∴△NMB≌△NCM,(SSS)∴∠NBC=∠NCB(全等三角形對應(yīng)角相等)∴∠NBC+∠ABN=∠NCB+∠DCN即∠ABC=∠DCB。

巧求三角形中線段的比值例1.如圖1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC。解:過點D作DG//AC,交BF于點G所以DG:FC=BD:BC因為BD:DC=1:3所以BD:BC=1:4即DG:FC=1:4,F(xiàn)C=4DG因為DG:AF=DE:AE又因為AE:ED=2:3所以DG:AF=3:2即所以AF:FC=:4DG=1:6例2.如圖2,BC=CD,AF=FC,求EF:FD解:過點C作CG//DE交AB于點G,則有EF:GC=AF:AC因為AF=FC所以AF:AC=1:2即EF:GC=1:2,因為CG:DE=BC:BD又因為BC=CD所以BC:BD=1:2CG:DE=1:2即DE=2GC因為FD=ED-EF=所以EF:FD=小結(jié):以上兩例中,輔助線都作在了“已知”條件中出現(xiàn)的兩條已知線段的交點處,且所作的輔助線與結(jié)論中出現(xiàn)的線段平行。請再看兩例,讓我們感受其中的奧妙!例3.如圖3,BD:DC=1:3,AE:EB=2:3,求AF:FD。解:過點B作BG//AD,交CE延長線于點G。所以DF:BG=CD:CB因為BD:DC=1:3所以CD:CB=3:4即DF:BG=3:4,因為AF:BG=AE:EB又因為AE:EB=2:3所以AF:BG=2:3即所以AF:DF=例4.如圖4,BD:DC=1:3,AF=FD,求EF:FC。解:過點D作DG//CE,交AB于點G所以EF:DG=AF:AD因為AF=FD所以AF:AD=1:2圖4即EF:DG=1:2因為DG:CE=BD:BC,又因為BD:CD=1:3,所以BD:BC=1:4即DG:CE=1:4,CE=4DG因為FC=CE-EF=所以EF:FC==1:7練習(xí):1.如圖5,BD=DC,AE:ED=1:5,求AF:FB。2.如圖6,AD:DB=1:3,AE:EC=3:1,求BF:FC。答案:1、1:10;2.9:1

初中幾何輔助線一初中幾何常見輔助線口訣人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。三角形圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。四邊形平行四邊形出現(xiàn),對稱中心等分點。梯形問題巧轉(zhuǎn)換,變?yōu)椤骱汀?。平移腰,移對角,兩腰延長作出高。如果出現(xiàn)腰中點,細(xì)心連上中位線。上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項一大片。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會減。虛心勤學(xué)加苦練,成績上升成直線。二由角平分線想到的輔助線口訣:圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對稱性;b、角平分線上的點到角兩邊的距離相等。對于有角平分線的輔助線的作法,一般有兩種。①從角平分線上一點向兩邊作垂線;②利用角平分線,構(gòu)造對稱圖形(如作法是在一側(cè)的長邊上截取短邊)。通常情況下,出現(xiàn)了直角或是垂直等條件時,一般考慮作垂線;其它情況下考慮構(gòu)造對稱圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線(一)、截取構(gòu)全等幾何的證明在于猜想與嘗試,但這種嘗試與猜想是在一定的規(guī)律基本之上的,希望同學(xué)們能掌握相關(guān)的幾何規(guī)律,在解決幾何問題中大膽地去猜想,按一定的規(guī)律去嘗試。下面就幾何中常見的定理所涉及到的輔助線作以介紹。如圖1-1,∠AOC=∠BOC,如取OE=OF,并連接DE、DF,則有△OED≌△OFD,從而為我們證明線段、角相等創(chuàng)造了條件。如圖1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,點E在AD上,求證:BC=AB+CD。分析:此題中就涉及到角平分線,可以利用角平分線來構(gòu)造全等三角形,即利用解平分線來構(gòu)造軸對稱圖形,同時此題也是證明線段的和差倍分問題,在證明線段的和差倍分問題中常用到的方法是延長法或截取法來證明,延長短的線段或在長的線段長截取一部分使之等于短的線段。但無論延長還是截取都要證明線段的相等,延長要證明延長后的線段與某條線段相等,截取要證明截取后剩下的線段與某條線段相等,進而達(dá)到所證明的目的。簡證:在此題中可在長線段BC上截取BF=AB,再證明CF=CD,從而達(dá)到證明的目的。這里面用到了角平分線來構(gòu)造全等三角形。另外一個全等自已證明。此題的證明也可以延長BE與CD的延長線交于一點來證明。自已試一試。已知:如圖1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求證DC⊥AC分析:此題還是利用角平分線來構(gòu)造全等三角形。構(gòu)造的方法還是截取線段相等。其它問題自已證明。已知:如圖1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求證:AB-AC=CD分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問題。用到的是截取法來證明的,在長的線段上截取短的線段,來證明。試試看可否把短的延長來證明呢?練習(xí)已知在△ABC中,AD平分∠BAC,∠B=2∠C,求證:AB+BD=AC已知:在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC,求證:AE=2CE已知:在△ABC中,AB>AC,AD為∠BAC的平分線,M為AD上任一點。求證:BM-CM>AB-AC已知:D是△ABC的∠BAC的外角的平分線AD上的任一點,連接DB、DC。求證:BD+CD>AB+AC。(二)、角分線上點向角兩邊作垂線構(gòu)全等過角平分線上一點向角兩邊作垂線,利用角平分線上的點到兩邊距離相等的性質(zhì)來證明問題。如圖2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。求證:∠ADC+∠B=180

分析:可由C向∠BAD的兩邊作垂線。近而證∠ADC與∠B之和為平角。如圖2-2,在△ABC中,∠A=90

,AB=AC,∠ABD=∠CBD。求證:BC=AB+AD分析:過D作DE⊥BC于E,則AD=DE=CE,則構(gòu)造出全等三角形,從而得證。此題是證明線段的和差倍分問題,從中利用了相當(dāng)于截取的方法。已知如圖2-3,△ABC的角平分線BM、CN相交于點P。求證:∠BAC的平分線也經(jīng)過點P。分析:連接AP,證AP平分∠BAC即可,也就是證P到AB、AC的距離相等。練習(xí):1.如圖2-4∠AOP=∠BOP=15

,PC//OA,PD⊥OA,如果PC=4,則PD=()A4B3C2D12.已知在△ABC中,∠C=90

,AD平分∠CAB,CD=1.5,DB=2.5.求AC。3.已知:如圖2-5,∠BAC=∠CAD,AB>AD,CE⊥AB,AE=(AB+AD).求證:∠D+∠B=180

。4.已知:如圖2-6,在正方形ABCD中,E為CD的中點,F(xiàn)為BC上的點,∠FAE=∠DAE。求證:AF=AD+CF。已知:如圖2-7,在Rt△ABC中,∠ACB=90

,CD⊥AB,垂足為D,AE平分∠CAB交CD于F,過F作FH//AB交BC于H。求證CF=BH。(三):作角平分線的垂線構(gòu)造等腰三角形從角的一邊上的一點作角平分線的垂線,使之與角的兩邊相交,則截得一個等腰三角形,垂足為底邊上的中點,該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合一的性質(zhì)。(如果題目中有垂直于角平分線的線段,則延長該線段與角的另一邊相交)。已知:如圖3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中點。求證:DH=(AB-AC)分析:延長CD交AB于點E,則可得全等三角形。問題可證。已知:如圖3-2,AB=AC,∠BAC=90

,AD為∠ABC的平分線,CE⊥BE.求證:BD=2CE。分析:給出了角平分線給出了邊上的一點作角平分線的垂線,可延長此垂線與另外一邊相交,近而構(gòu)造出等腰三角形。例3.已知:如圖3-3在△ABC中,AD、AE分別∠BAC的內(nèi)、外角平分線,過頂點B作BFAD,交AD的延長線于F,連結(jié)FC并延長交AE于M。求證:AM=ME。分析:由AD、AE是∠BAC內(nèi)外角平分線,可得EA⊥AF,從而有BF//AE,所以想到利用比例線段證相等。已知:如圖3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延長線于M。求證:AM=(AB+AC)分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對稱變換,作△ABD關(guān)于AD的對稱△AED,然后只需證DM=EC,另外由求證的結(jié)果AM=(AB+AC),即2AM=AB+AC,也可嘗試作△ACM關(guān)于CM的對稱△FCM,然后只需證DF=CF即可。練習(xí):已知:在△ABC中,AB=5,AC=3,D是BC中點,AE是∠BAC的平分線,且CE⊥AE于E,連接DE,求DE。已知BE、BF分別是△ABC的∠ABC的內(nèi)角與外角的平分線,AF⊥BF于F,AE⊥BE于E,連接EF分別交AB、AC于M、N,求證MN=BC(四)、以角分線上一點做角的另一邊的平行線有角平分線時,常過角平分線上的一點作角的一邊的平行線,從而構(gòu)造等腰三角形?;蛲ㄟ^一邊上的點作角平分線的平行線與另外一邊的反向延長線相交,從而也構(gòu)造等腰三角形。如圖4-1和圖4-2所示。12ACDB12ACDB例5如圖,BC>BA,BD平分∠ABC,且AD=CD,求證:∠A+∠C=180。BBDCAABECD例6如圖,AB∥CD,AE、DE分別平分ABECD練習(xí):1.已知,如圖,∠C=2∠A,AC=2BC。求證:△ABC是直角三角形。CCAB2.已知:如圖,AB=2AC,∠1=∠2,DA=DB,求證:DC⊥ACABABDC123.已知CE、AD是△ABC的角平分線,∠B=60°,求證:AC=AE+CDAAEBDC4.已知:如圖在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分線,求證:BC=AB+ADAABCD三由線段和差想到的輔助線口訣:線段和差及倍半,延長縮短可試驗。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時,一般方法是截長補短法:1、截長:在長線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;2、補短:將一條短線段延長,延長部分等于另一條短線段,然后證明新線段等于長線段。對于證明有關(guān)線段和差的不等式,通常會聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法放在一個三角形中證明。在利用三角形三邊關(guān)系證明線段不等關(guān)系時,如直接證不出來,可連接兩點或廷長某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個或幾個三角形中,再運用三角形三邊的不等關(guān)系證明,如:已知如圖1-1:D、E為△ABC內(nèi)兩點,求證:AB+AC>BD+DE+CE.證明:(法一)將DE兩邊延長分別交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:圖1-2)延長BD交AC于F,廷長CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF(三角形兩邊之和大于第三邊)…(1)GF+FC>GE+CE(同上)(2)DG+GE>DE(同上)(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。在利用三角形的外角大于任何和它不相鄰的內(nèi)角時如直接證不出來時,可連接兩點或延長某邊,構(gòu)造三角形,使求證的大角在某個三角形的外角的位置上,小角處于這個三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1:已知D為△ABC內(nèi)的任一點,求證:∠BDC>∠BAC。分析:因為∠BDC與∠BAC不在同個三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;證法一:延長BD交AC于點E,這時∠BDC是△EDC的外角,∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC證法二:連接AD,并廷長交BC于F,這時∠BDF是△ABD的外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC。注意:利用三角形外角定理證明不等關(guān)系時,通常將大角放在某三角形的外角位置上,小角放在這個三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。有角平分線時,通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1:已知AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。分析:要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對應(yīng)邊相等,把EN,F(xiàn)N,EF移到同個三角形中。證明:在DN上截取DN=DB,連接NE,NF,則DN=DC,在△DBE和△NDE中:DN=DB(輔助線作法)∠1=∠2(已知)ED=ED(公共邊)∴△DBE≌△NDE(SAS)∴BE=NE(全等三角形對應(yīng)邊相等)同理可得:CF=NF在△EFN中EN+FN>EF(三角形兩邊之和大于第三邊)∴BE+CF>EF。注意:當(dāng)證題有角平分線時,??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的對應(yīng)性質(zhì)得到相等元素。截長補短法作輔助線。例如:已知如圖6-1:在△ABC中,AB>AC,∠1=∠2,P為AD上任一點求證:AB-AC>PB-PC。分析:要證:AB-AC>PB-PC,想到利用三角形三邊關(guān)系,定理證之,因為欲證的線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再連接PN,則PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB-PC。證明:(截長法)在AB上截取AN=AC連接PN,在△APN和△APC中AN=AC(輔助線作法)∠1=∠2(已知)AP=AP(公共邊)∴△APN≌△APC(SAS),∴PC=PN(全等三角形對應(yīng)邊相等)∵在△BPN中,有PB-PN<BN(三角形兩邊之差小于第三邊)∴BP-PC<AB-AC證明:(補短法)延長AC至M,使AM=AB,連接PM,在△ABP和△AMP中AB=AM(輔助線作法)∠1=∠2(已知)AP=AP(公共邊)∴△ABP≌△AMP(SAS)∴PB=PM(全等三角形對應(yīng)邊相等)又∵在△PCM中有:CM>PM-PC(三角形兩邊之差小于第三邊)∴AB-AC>PB-PC。DAECB例1.如圖,AC平分∠BAD,CE⊥AB,且∠B+DAECB例2如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,求證:∠ADC+∠B=180o例3已知:如圖,等腰三角形ABC中,AB=AC,A=108°,BD平分ABC。DCDCBAMBDCA例4如圖,已知Rt△ABC中,∠ACB=90°,AD是∠CAB的平分線,DMMBDCA1.如圖,AB∥CD,AE、DE分別平分∠BAD各∠ADE,求證:AD=AB+CD。EEDCBA2.如圖,△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E。求證:BD=DE+CE四由中點想到的輔助線口訣:三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。在三角形中,如果已知一點是三角形某一邊上的中點,那么首先應(yīng)該聯(lián)想到三角形的中線、中位線、加倍延長中線及其相關(guān)性質(zhì)(直角三角形斜邊中線性質(zhì)、等腰三角形底邊中線性質(zhì)),然后通過探索,找到解決問題的方法。(一)、中線把原三角形分成兩個面積相等的小三角形即如圖1,AD是ΔABC的中線,則SΔABD=SΔACD=SΔABC(因為ΔABD與ΔACD是等底同高的)。例1.如圖2,ΔABC中,AD是中線,延長AD到E,使DE=AD,DF是ΔDCE的中線。已知ΔABC的面積為2,求:ΔCDF的面積。解:因為AD是ΔABC的中線,所以SΔACD=SΔABC=×2=1,又因CD是ΔACE的中線,故SΔCDE=SΔACD=1,因DF是ΔCDE的中線,所以SΔCDF=SΔCDE=×1=?!唳DF的面積為。(二)、由中點應(yīng)想到利用三角形的中位線例2.如圖3,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點,BA、CD的延長線分別交EF的延長線G、H。求證:∠BGE=∠CHE。證明:連結(jié)BD,并取BD的中點為M,連結(jié)ME、MF,∵ME是ΔBCD的中位線,∴MECD,∴∠MEF=∠CHE,∵MF是ΔABD的中位線,∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,從而∠BGE=∠CHE。(三)、由中線應(yīng)想到延長中線例3.圖4,已知ΔABC中,AB=5,AC=3,連BC上的中線AD=2,求BC的長。解:延長AD到E,使DE=AD,則AE=2AD=2×2=4。在ΔACD和ΔEBD中,

∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,從而BE=AC=3。在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2。例4.如圖5,已知ΔABC中,AD是∠BAC的平分線,AD又是BC邊上的中線。求證:ΔABC是等腰三角形。證明:延長AD到E,使DE=AD。仿例3可證:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,從而AB=AC,即ΔABC是等腰三角形。(四)、直角三角形斜邊中線的性質(zhì)例5.如圖6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求證:AC=BD。證明:取AB的中點E,連結(jié)DE、CE,則DE、CE分別為RtΔABD,RtΔABC斜邊AB上的中線,故DE=CE=AB,因此∠CDE=∠DCE?!逜B//DC,∴∠CDE=∠1,∠DCE=∠2,∴∠1=∠2,在ΔADE和ΔBCE中,∵DE=CE,∠1=∠2,AE=BE,∴ΔADE≌ΔBCE,∴AD=BC,從而梯形ABCD是等腰梯形,因此AC=BD。(五)、角平分線且垂直一線段,應(yīng)想到等腰三角形的中線例6.如圖7,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點D,CE垂直于BD,交BD的延長線于點E。求證:BD=2CE。證明:延長BA,CE交于點F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,從而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。注:此例中BE是等腰ΔBCF的底邊CF的中線。(六)中線延長口訣:三角形中有中線,延長中線等中線。題目中如果出現(xiàn)了三角形的中線,常延長加倍此線段,再將端點連結(jié),便可得到全等三角形。例一:如圖4-1:AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。證明:廷長ED至M,使DM=DE,連接CM,MF。在△BDE和△CDM中,BD=CD(中點定義)∠1=∠5(對頂角相等)ED=MD(輔助線作法)∴△BDE≌△CDM(SAS)又∵∠1=∠2,∠3=∠4(已知)∠1+∠2+∠3+∠4=180°(平角的定義)∴∠3+∠2=90°即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中ED=MD(輔助線作法)∠EDF=∠FDM(已證)DF=DF(公共邊)∴△EDF≌△MDF(SAS)∴EF=MF(全等三角形對應(yīng)邊相等)∵在△CMF中,CF+CM>MF(三角形兩邊之和大于第三邊)∴BE+CF>EF上題也可加倍FD,證法同上。注意:當(dāng)涉及到有以線段中點為端點的線段時,可通過延長加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。例二:如圖5-1:AD為△ABC的中線,求證:AB+AC>2AD。分析:要證AB+AC>2AD,由圖想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左邊比要證結(jié)論多BD+CD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線,把所要證的線段轉(zhuǎn)移到同一個三角形中去證明:延長AD至E,使DE=AD,連接BE,CE∵AD為△ABC的中線(已知)∴BD=CD(中線定義)在△ACD和△EBD中BD=CD(已證)∠1=∠2(對頂角相等)AD=ED(輔助線作法)∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形對應(yīng)邊相等)∵在△ABE中有:AB+BE>AE(三角形兩邊之和大于第三邊)∴AB+AC>2AD。練習(xí):1如圖,AB=6,AC=8,D為BC的中點,求AD的取值范圍。BBADC862如圖,AB=CD,E為BC的中點,∠BAC=∠BCA,求證:AD=2AE。BEBECDA3如圖,AB=AC,AD=AE,M為BE中點,∠BAC=∠DAE=90°。求證:AM⊥DC。DDMCDEDADBD4,已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖5-2,求證EF=2AD。ABDCABDCEF五全等三角形輔助線找全等三角形的方法:(1)可以從結(jié)論出發(fā),看要證明相等的兩條線段(或角)分別在哪兩個可能全等的三角形中;(2)可以從已知條件出發(fā),看已知條件可以確定哪兩個三角形相等;(3)從條件和結(jié)論綜合考慮,看它們能一同確定哪兩個三角形全等;(4)若上述方法均不行,可考慮添加輔助線,構(gòu)造全等三角形。三角形中常見輔助線的作法:①延長中線構(gòu)造全等三角形;②利用翻折,構(gòu)造全等三角形;③引平行線構(gòu)造全等三角形;④作連線構(gòu)造等腰三角形。常見輔助線的作法有以下幾種:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理.過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答.(一)、倍長中線(線段)造全等1:(“希望杯”試題)已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.2:如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點,試比較BE+CF與EF的大小.3:如圖,△ABC中,BD=DC=AC,E是DC的中點,求證:AD平分∠BAE.中考應(yīng)用(09崇文二模)以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點.探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.(1)如圖①當(dāng)為直角三角形時,AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;(2)將圖①中的等腰Rt繞點A沿逆時針方向旋轉(zhuǎn)(0<<90)后,如圖②所示,(1)問中得到的兩個結(jié)論是否發(fā)生改變?并說明理由.(二)、截長補短1.如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC2:如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點E,求證;AB=AC+BD3:如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4:如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:5:如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點,求證;AB-AC>PB-PC中考應(yīng)用(08海淀一模)(三)、平移變換1.AD為△ABC的角平分線,直線MN⊥AD于A.E為MN上一點,△ABC周長記為,△EBC周長記為.求證>.2:如圖,在△ABC的邊上取兩點D、E,且BD=CE,求證:AB+AC>AD+AE.(四)、借助角平分線造全等1:如圖,已知在△ABC中,∠B=60°,△ABC的角平分線AD,CE相交于點O,求證:OE=OD2:(06鄭州市中考題)如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)說明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的長.中考應(yīng)用(06北京中考)如圖①,OP是∠MON的平分線,請你利用該圖形畫一對以O(shè)P所在直線為對稱軸的全等三角形。請你參考這個作全等三角形的方法,解答下列問題:(1)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F。請你判斷并寫出FE與FD之間的數(shù)量關(guān)系;(第23題圖)OPAMNEBCD(第23題圖)OPAMNEBCDFACEFBD圖①圖②圖③(五)、旋轉(zhuǎn)1:正方形ABCD中,E為BC上的一點,F(xiàn)為CD上的一點,BE+DF=EF,求∠EAF的度數(shù).2:D為等腰斜邊AB的中點,DM⊥DN,DM,DN分別交BC,CA于點E,F。當(dāng)繞點D轉(zhuǎn)動時,求證DE=DF。若AB=2,求四邊形DECF的面積。3.如圖,是邊長為3的等邊三角形,是等腰三角形,且,以D為頂點做一個角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則的周長為;中考應(yīng)用(07佳木斯)已知四邊形中,,,,,,繞點旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于.當(dāng)繞點旋轉(zhuǎn)到時(如圖1),易證.當(dāng)繞點旋轉(zhuǎn)到時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.(圖(圖1)(圖2)(圖3)(西城09年一模)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大小.(09崇文一模)在等邊的兩邊AB、AC所在直線上分別有兩點M、N,D為外一點,且,,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動時,BM、NC、MN之間的數(shù)量關(guān)系及的周長Q與等邊的周長L的關(guān)系.圖1圖2圖3(=1\*ROMANI)如圖1,當(dāng)點M、N邊AB、AC上,且DM=DN時,BM、NC、MN之間的數(shù)量關(guān)系是;此時;(=2\*ROMANII)如圖2,點M、N邊AB、AC上,且當(dāng)DMDN時,猜想(=1\*ROMANI)問的兩個結(jié)論還成立嗎?寫出你的猜想并加以證明;(=3\*ROMANIII)如圖3,當(dāng)M、N分別在邊AB、CA的延長線上時,若AN=,則Q=(用、L表示).六梯形的輔助線口訣:梯形問題巧轉(zhuǎn)換,變?yōu)椤骱汀?。平移腰,移對角,兩腰延長作出高。如果出現(xiàn)腰中點,細(xì)心連上中位線。上述方法不奏效,過腰中點全等造。通常情況下,通過做輔助線,把梯形轉(zhuǎn)化為三角形、平行四邊形,是解梯形問題的基本思路。至于選取哪種方法,要結(jié)合題目圖形和已知條件。常見的幾種輔助線的作法如下:作法圖形平移腰,轉(zhuǎn)化為三角形、平行四邊形。平移對角線。轉(zhuǎn)化為三角形、平行四邊形。延長兩腰,轉(zhuǎn)化為三角形。作高,轉(zhuǎn)化為直角三角形和矩形。中位線與腰中點連線。(一)、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長.解:過點D作DE∥BC交AB于點E.又AB∥CD,所以四邊形BCDE是平行四邊形.所以DE=BC=17,CD=BE.在Rt△DAE中,由勾股定理,得AE2=DE2-AD2,即AE2=172-152=64.所以AE=8.所以BE=AB-AE=16-8=8.即CD=8.例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。解:過點B作BM//AD交CD于點M,在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范圍是:5-4<BC<5+4,即1<BC<9。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90°,AD=1,BC=3,E、F分別是AD、BC的中點,連接EF,求EF的長。解:過點E分別作AB、CD的平行線,交BC于點G、H,可得∠EGH+∠EHG=∠B+∠C=90°則△EGH是直角三角形因為E、F分別是AD、BC的中點,容易證得F是GH的中點所以3、平移對角線:例4、已知:梯形ABCD中,AD//BC,AD=1,BC=4,BD=3,AC=4,求梯形ABCD的面積.解:如圖,作DE∥AC,交BC的延長線于E點.ABDCEH∵ABDCEH∴BE=BC+CE=BC+AD=4+1=5,DE=AC=4∵在△DBE中,BD=3,DE=4,BE=5∴∠BDE=90°.作DH⊥BC于H,則.例5如圖,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=,求證:AC⊥BD。解:過點C作BD的平行線交AD的延長線于點E,易得四邊形BCED是平行四邊形,則DE=BC,CE=BD=,所以AE=AD+DE=AD+BC=3+7=10。在等腰梯形ABCD中,AC=BD=,所以在△ACE中,,從而AC⊥CE,于是AC⊥BD。例6如圖,在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面積。解:過點D作DE//AC,交BC的延長線于點E,則四邊形ACED是平行四邊形,即。所以由勾股定理得(cm)(cm)所以,即梯形ABCD的面積是150cm2。(二)、延長即延長兩腰相交于一點,可使梯形轉(zhuǎn)化為三角形。例7如圖,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的長。解:延長BA、CD交于點E。在△BCE中,∠B=50°,∠C=80°。所以∠E=50°,從而BC=EC=5同理可得AD=ED=2所以CD=EC-ED=5-2=3例8.如圖所示,四邊形ABCD中,AD不平行于BC,AC=BD,AD=BC.判斷四邊形ABCD的形狀,并證明你的結(jié)論.解:四邊形ABCD是等腰梯形.證明:延長AD、BC相交于點E,如圖所示.∵AC=BD,AD=BC,AB=BA,∴△DAB≌△CBA.∴∠DAB=∠CBA.∴EA=EB.又AD=BC,∴DE=CE,∠EDC=∠ECD.而∠E+∠EAB+∠EBA=∠E+∠EDC+∠ECD=180°,∴∠EDC=∠EAB,∴DC∥AB.又AD不平行于BC,∴四邊形ABCD是等腰梯形.(三)、作對角線即通過作對角線,使梯形轉(zhuǎn)化為三角形。例9如圖6,在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于點E,求證:AD=DE。解:連結(jié)BD,由AD//BC,得∠ADB=∠DBE;由BC=CD,得∠DBC=∠BDC。所以∠ADB=∠BDE。又∠BAD=∠DEB=90°,BD=BD,所以Rt△BAD≌Rt△BED,得AD=DE。(四)、作梯形的高1、作一條高例10如圖,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,對角線AC⊥BD,垂足為F,過點F作EF//AB,交AD于點E,求證:四邊形ABFE是等腰梯形。證:過點D作DG⊥AB于點G,則易知四邊形DGBC是矩形,所以DC=BG。因為AB=2DC,所以AG=GB。從而DA=DB,于是∠DAB=∠DBA。又EF//AB,所以四邊形ABFE是等腰梯形。2、作兩條高例11、在等腰梯形ABCD中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm,求:(1)腰AB的長;(2)梯形ABCD的面積.ABCDDEDFD解:作AE⊥BC于E,DF⊥ABCDDEDFD∴四邊形AEFD是矩形,EF=AD=3cm∵AB=DC∵在Rt△ABE中,∠B=60°,BE=1cm∴AB=2BE=2cm,∴例12如圖,在梯形ABCD中,AD為上底,AB>CD,求證:BD>AC。證:作AE⊥BC于E,作DF⊥BC于F,則易知AE=DF。在Rt△ABE和Rt△DCF中,因為AB>CD,AE=DF。所以由勾股定理得BE>CF。即BF>CE。在Rt△BDF和Rt△CAE中由勾股定理得BD>AC(五)、作中位線1、已知梯形一腰中點,作梯形的中位線。例13如圖,在梯形ABCD中,AB//DC,O是BC的中點,∠AOD=90°,求證:AB+CD=AD。證:取AD的中點E,連接OE,則易知OE是梯形ABCD的中位線,從而OE=(AB+CD)①在△AOD中,∠AOD=90°,AE=DE所以 ②由①、②得AB+CD=AD。2、已知梯形兩條對角線的中點,連接梯形一頂點與一條對角線中點,并延長與底邊相交,使問題轉(zhuǎn)化為三角形中位線。例14如圖,在梯形ABCD中,AD//BC,E、F分別是BD、AC的中點,求證:(1)EF//AD;(2)。證:連接DF,并延長交BC于點G,易證△AFD≌△CFG則AD=CG,DF=GF由于DE=BE,所以EF是△BDG的中位線從而EF//BG,且因為AD//BG,所以EF//AD,EF3、在梯形中出現(xiàn)一腰上的中點時,過這點構(gòu)造出兩個全等的三角形達(dá)到解題的目的。例15、在梯形ABCD中,AD∥BC,∠BAD=900,E是DC上的中點,連接AE和BE,求∠AEB=2∠CBE。解:分別延長AE與BC,并交于F點∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F(兩直線平行內(nèi)錯角相等)∠AED=∠FEC(對頂角相等)DE=EC(E點是CD的中點)∴△ADE≌△FCE(AAS)∴AE=FE在△ABF中∠FBA=900 且AE=FE∴BE=FE(直角三角形斜邊上的中線等于斜邊的一半)∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+∠FEB=2∠CBEABDCEABDCEF解:AE=BE,理由如下:延長AE,與BC延長線交于點F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC,∴BE=AE.例17、已知:梯形ABCD中,AD//BC,E為DC中點,EF⊥AB于F點,AB=3cm,EF=5cm,求梯形ABCD的面積.解:如圖,過E點作MN∥AB,分別交AD的延長線于M點,交BC于N點.ABCDEABCDEFMN∴△DEM≌△CNE四邊形ABNM是平行四邊形∵EF⊥AB,∴S梯形ABCD=S□ABNM=AB×EF=15cm2.【模擬試題】(答題時間:40分鐘)1.若等腰梯形的銳角是60°,它的兩底分別為11cm,35cm,則它的腰長為__________cm.2.如圖所示,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,則此等腰梯形的周長為()A.19 B.20 C.21 D.223.如圖所示,AB∥CD,AE⊥DC,AE=12,BD=20,AC=15,則梯形ABCD的面積為()A.130 B.140 C.150 D.160*4.如圖所示,在等腰梯形ABCD中,已知AD∥BC,對角線AC與BD互相垂直,且AD=30,BC=70,求BD的長.5.如圖所示,已知等腰

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論