版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北京市朝陽外國語2024屆高三第九次模擬考試數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績X近似服從正態(tài)分布,且.從中隨機(jī)抽取參加此次考試的學(xué)生500名,估計(jì)理科數(shù)學(xué)成績不低于110分的學(xué)生人數(shù)約為()A.40 B.60 C.80 D.1002.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.23.函數(shù)圖象的大致形狀是()A. B.C. D.4.如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.5.已知是過拋物線焦點(diǎn)的弦,是原點(diǎn),則()A.-2 B.-4 C.3 D.-36.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則公比的值為()A. B.或 C. D.7.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.8.設(shè)集合,則()A. B. C. D.9.已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)為拋物線上任意一點(diǎn)的平分線與軸交于,則的最大值為A. B. C. D.10.已知函數(shù)與的圖象有一個(gè)橫坐標(biāo)為的交點(diǎn),若函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.11.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.412.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為______.14.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個(gè)不等式應(yīng)該為__________.15.若函數(shù),其中且,則______________.16.已知數(shù)列中,為其前項(xiàng)和,,,則_________,_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.18.(12分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足>1,求實(shí)數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.19.(12分)某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3于M
),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1
(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測EF的視角(∠EPF)最大?請?jiān)冢?)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo).20.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項(xiàng)和為,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前n項(xiàng)和,求.21.(12分)市民小張計(jì)劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個(gè)還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個(gè)月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張?jiān)摴P貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個(gè)還款月應(yīng)還4900元,最后一個(gè)還款月應(yīng)還2510元,試計(jì)算小張?jiān)摴P貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張?jiān)摴P貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟(jì)利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.22.(10分)某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則如下:獎(jiǎng)盒中放有除顏色不同外其余完全相同的4個(gè)球(紅、黃、黑、白).顧客不放回的每次摸出1個(gè)球,若摸到黑球則摸獎(jiǎng)停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì).(1)求1名顧客摸球2次摸獎(jiǎng)停止的概率;(2)記X為1名顧客摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.2、A【解析】
求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因?yàn)?,所以,所以函?shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點(diǎn)睛】本題考查函數(shù)表達(dá)式判斷函數(shù)圖像,屬于中檔題.4、B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點(diǎn)共線可得.【詳解】解:依題:,又三點(diǎn)共線,,解得.故選:.【點(diǎn)睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運(yùn)算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點(diǎn)共線?(為平面內(nèi)任一點(diǎn),)5、D【解析】
設(shè),,設(shè):,聯(lián)立方程得到,計(jì)算得到答案.【詳解】設(shè),,故.易知直線斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點(diǎn)睛】本題考查了拋物線中的向量的數(shù)量積,設(shè)直線為可以簡化運(yùn)算,是解題的關(guān)鍵.6、C【解析】
由可得,故可求的值.【詳解】因?yàn)?,所以,故,因?yàn)檎?xiàng)等比數(shù)列,故,所以,故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.7、C【解析】
利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).8、C【解析】
解對數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.9、A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線方程為x=?1,
過點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時(shí),,當(dāng)時(shí),,,綜上:.故選:A.【點(diǎn)睛】本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力,屬于中檔題.10、A【解析】
根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個(gè)橫坐標(biāo)為的交點(diǎn),則,,,,,若函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋叮瑒t,所以當(dāng)時(shí),,在有且僅有5個(gè)零點(diǎn),,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點(diǎn)個(gè)數(shù)問題,考查轉(zhuǎn)化思想和計(jì)算能力.11、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。12、A【解析】
首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點(diǎn)時(shí)直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求,再根據(jù)的范圍求出即可.【詳解】由題可知,故.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)函數(shù)值的求解,涉及對數(shù)的運(yùn)算,屬基礎(chǔ)題.14、【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個(gè)不等式,,則有,對于第二個(gè)不等式,,則有,對于第三個(gè)不等式,,則有,依此類推:第個(gè)不等式為:,故答案為.【點(diǎn)睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.15、【解析】
先化簡函數(shù)的解析式,在求出,從而求得的值.【詳解】由題意,函數(shù)可化簡為,所以,所以.故答案為:0.【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的應(yīng)用,以及導(dǎo)數(shù)的運(yùn)算和函數(shù)值的求解,其中解答中正確化簡函數(shù)的解析式,準(zhǔn)確求解導(dǎo)數(shù)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.16、8(寫為也得分)【解析】
由,得,.當(dāng)時(shí),,所以,所以的奇數(shù)項(xiàng)是以1為首項(xiàng),以2為公比的等比數(shù)列;其偶數(shù)項(xiàng)是以2為首項(xiàng),以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時(shí),,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時(shí),恒成立,此時(shí)函數(shù)在上單調(diào)遞減,∴函數(shù)無極值;②當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.18、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動(dòng)區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點(diǎn)與所研究的區(qū)間的大小關(guān)系來進(jìn)行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進(jìn)而等價(jià)于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉(zhuǎn)化為求對應(yīng)函數(shù)的最值,得到a≤,再利用導(dǎo)數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當(dāng)t≥1時(shí),f(x)在[t,t+1]上單調(diào)遞增,f(x)的最小值為f(t)=t-lnt;當(dāng)0<t<1時(shí),f(x)在區(qū)間(t,1)上為減函數(shù),在區(qū)間(1,t+1)上為增函數(shù),f(x)的最小值為f(1)=1.綜上,m(t)=(2)h(x)=x2-(a+1)x+lnx,不妨取0<x1<x2,則x1-x2<0,則由,可得h(x1)-h(huán)(x2)<x1-x2,變形得h(x1)-x1<h(x2)-x2恒成立.令F(x)=h(x)-x=x2-(a+2)x+lnx,x>0,則F(x)=x2-(a+2)x+lnx在(0,+∞)上單調(diào)遞增,故F′(x)=2x-(a+2)+≥0在(0,+∞)上恒成立,所以2x+≥a+2在(0,+∞)上恒成立.因?yàn)?x+≥2,當(dāng)且僅當(dāng)x=時(shí)取“=”,所以a≤2-2.(3)因?yàn)閒(x)≥,所以a(x+1)≤2x2-xlnx.因?yàn)閤∈(0,1],則x+1∈(1,2],所以?x∈(0,1],使得a≤成立.令M(x)=,則M′(x)=.令y=2x2+3x-lnx-1,則由y′==0可得x=或x=-1(舍).當(dāng)x∈時(shí),y′<0,則函數(shù)y=2x2+3x-lnx-1在上單調(diào)遞減;當(dāng)x∈時(shí),y′>0,則函數(shù)y=2x2+3x-lnx-1在上單調(diào)遞增.所以y≥ln4->0,所以M′(x)>0在x∈(0,1]時(shí)恒成立,所以M(x)在(0,1]上單調(diào)遞增.所以只需a≤M(1),即a≤1.所以實(shí)數(shù)a的最大值為1.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合問題,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算能力,屬于難題.19、(1)見解析,,x[0,1];(2)P(,)時(shí),視角∠EPF最大.【解析】
(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點(diǎn)P的坐標(biāo).【詳解】(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點(diǎn)B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當(dāng)且僅當(dāng)即,即,即時(shí)取等號(hào);故P(,)時(shí)視角∠EPF最大,答:P(,)時(shí),視角∠EPF最大.【點(diǎn)睛】本題主要考查圓錐曲線的實(shí)際應(yīng)用,理解題意,構(gòu)建合適的模型是求解的關(guān)鍵,涉及最值問題一般利用基本不等式或者導(dǎo)數(shù)來進(jìn)行求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、(1),;(2).【解析】
(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項(xiàng)公式;(2)奇數(shù)項(xiàng)分一組用裂項(xiàng)相消法求和,偶數(shù)項(xiàng)分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時(shí),,為偶數(shù)時(shí),,∴.【點(diǎn)睛】本題考查求等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查分組求和法及裂項(xiàng)相消法、等差數(shù)列與等比數(shù)列的前項(xiàng)和公式,求通項(xiàng)公式采取的是基本量法,即求出公差、公比,由通項(xiàng)公式前項(xiàng)和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯(cuò)位相減法,裂項(xiàng)相消法,分組(并項(xiàng))求和法,倒序相加法等等.21、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級語文上冊 第四單元 快樂讀書吧:很久很久以前教學(xué)實(shí)錄 新人教版五四制
- 16《朱德的扁擔(dān)》教學(xué)實(shí)錄-2024-2025學(xué)年二年級上冊語文統(tǒng)編版
- 2024年正規(guī)產(chǎn)品分銷商合同3篇
- 1 我們的好朋友 第二課時(shí) 教學(xué)實(shí)錄-2023-2024學(xué)年道德與法治四年級下冊統(tǒng)編版
- 隴東學(xué)院《口腔護(hù)理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度汽車無償借給城市觀光旅游公司車輛合同3篇
- 6我參與 我奉獻(xiàn)《友善相待》教學(xué)實(shí)錄-2023-2024學(xué)年道德與法治五年級下冊統(tǒng)編版
- 10《父母多愛我》(教學(xué)實(shí)錄)-部編版道德與法治三年級上冊
- 2024版二手車置換業(yè)務(wù)合作協(xié)議范本2篇
- 2024年版:橋梁基礎(chǔ)試驗(yàn)工程合同2篇
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(含答案)
- AD15封裝詳細(xì)說明
- 電氣誤操作事故的分析及防范
- 印染廠定型安全生產(chǎn)注意事項(xiàng)
- 國家開放大學(xué)《流通概論》章節(jié)測試參考答案
- 原子吸收光譜儀的結(jié)構(gòu)
- MJS工法施工技術(shù)及控制要點(diǎn)
- 養(yǎng)殖戶糞污污染情況整改報(bào)告2篇
- 2022年?duì)I配貫通項(xiàng)目背景,相關(guān)系統(tǒng)及工作內(nèi)容介紹
- 工程公司薪酬體系方案
- 傳染病漏報(bào)檢查、責(zé)任追究制度
評論
0/150
提交評論