人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊學(xué)案:1 1 1 空間向量及其線性運(yùn)算_第1頁
人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊學(xué)案:1 1 1 空間向量及其線性運(yùn)算_第2頁
人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊學(xué)案:1 1 1 空間向量及其線性運(yùn)算_第3頁
人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊學(xué)案:1 1 1 空間向量及其線性運(yùn)算_第4頁
人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊學(xué)案:1 1 1 空間向量及其線性運(yùn)算_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教A版(新教材)高中數(shù)學(xué)選擇性必修第一冊PAGEPAGE1第一章空間向量與立體幾何〖數(shù)學(xué)文化〗——了解數(shù)學(xué)文化的發(fā)展與應(yīng)用向量最初被應(yīng)用于物理學(xué),很多物理量都是向量,如:力、速度、位移以及電場強(qiáng)度、磁感應(yīng)強(qiáng)度.大約公元前350年,古希臘著名學(xué)者亞里士多德就知道了力可以表示成向量,兩個(gè)力的合力可以用平行四邊形法則得到.“向量”一詞來自力學(xué)、〖解析〗幾何中的有向線段.最先使用有向線段表示向量的是英國科學(xué)家牛頓.歷史上很長一段時(shí)間,空間的向量結(jié)構(gòu)并未被數(shù)學(xué)家們所認(rèn)識,直到19世紀(jì)末20世紀(jì)初,人們才把空間的性質(zhì)與向量的運(yùn)算聯(lián)系起來,使向量成為具有一套優(yōu)良運(yùn)算通性的數(shù)學(xué)知識和數(shù)學(xué)體系.〖讀圖探新〗——發(fā)現(xiàn)現(xiàn)象背后的知識空間向量是一種重要的數(shù)學(xué)工具,它不僅在解決幾何問題中有著廣泛的應(yīng)用,而且在物理學(xué)、工程學(xué)、衛(wèi)星發(fā)射與運(yùn)行等方面也有著廣泛的應(yīng)用.問題1:港珠澳大橋是我國橋梁建設(shè)史上的又一座豐碑,它必定在推動經(jīng)濟(jì)發(fā)展中起到巨大的作用.在港珠澳大橋的建設(shè)過程中,涉及到很多空間的直線(如把大橋的斜拉索看成直線)和平面(如把海平面看成平面)的夾角問題,這些夾角如何計(jì)算?如何保證這些夾角的大小達(dá)到設(shè)計(jì)要求?問題2:北斗導(dǎo)航系統(tǒng)是在地球赤道平面上設(shè)置2顆地球同步衛(wèi)星,衛(wèi)星的赤道角距約60°.GPS是在6個(gè)軌道平面上設(shè)置24顆衛(wèi)星,軌道赤道傾角55°,軌道面赤道角距60°.在設(shè)計(jì)過程中如何計(jì)算這些角?鏈接:兩個(gè)問題中都涉及到空間角的計(jì)算問題,這些問題我們在高中數(shù)學(xué)的必修課中已經(jīng)學(xué)習(xí)了它們的計(jì)算方法,但是運(yùn)算方法技巧性強(qiáng),不適合現(xiàn)代工程設(shè)計(jì)的實(shí)踐和應(yīng)用,不適合應(yīng)用計(jì)算機(jī)進(jìn)行大量的數(shù)據(jù)處理,我們本章學(xué)習(xí)的空間向量,就可以把這些問題代數(shù)化,可以很方便地應(yīng)用計(jì)算機(jī)解決.

1.1空間向量及其運(yùn)算1.1.1空間向量及其線性運(yùn)算課標(biāo)要求素養(yǎng)要求1.經(jīng)歷由平面向量推廣到空間向量的過程,了解空間向量的概念.2.經(jīng)歷由平面向量的運(yùn)算及其法則推廣到空間向量的過程.3.掌握空間向量的線性運(yùn)算.在空間向量概念的形成和進(jìn)行線性運(yùn)算的過程中,經(jīng)歷由具體到抽象、由圖形語言到符號語言的表達(dá)過程,發(fā)展學(xué)生的直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算素養(yǎng).自主梳理1.空間向量的有關(guān)概念(1)空間向量的定義:在空間,我們把具有大小和方向的量叫做空間向量.(2)空間向量的長度:空間向量的大小叫做向量的長度或模.(3)表示法:eq\b\lc\{(\a\vs4\al\co1(①幾何表示法:空間向量用有向線段表示.,②字母表示法:用字母a,b,c,…表示;若向,量a的起點(diǎn)是A,終點(diǎn)是B,則向量a也可以記,作\o(AB,\s\up6(→)),其模記為|a|或|\o(AB,\s\up6(→))|.))2.特殊的空間向量名稱定義及表示零向量規(guī)定長度為0的向量叫做零向量,記為0單位向量模為1的向量叫做單位向量相反向量與向量a長度相等而方向相反的向量,叫做a的相反向量,記為-a共線向量如果表示若干空間向量的有向線段所在的直線互相平行或重合,那么這些向量叫做共線向量或平行向量.規(guī)定:零向量與任意向量平行,即對于任意向量a,都有0∥a.相等向量方向相同且模相等的向量稱為相等向量.在空間,同向且等長的有向線段表示同一向量或相等向量3.空間向量的線性運(yùn)算(1)如圖,定義空間向量的加法、減法以及數(shù)乘運(yùn)算:①a+b=eq\o(OA,\s\up6(→))+eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→));②a-b=eq\o(OA,\s\up6(→))-eq\o(OC,\s\up6(→))=eq\o(CA,\s\up6(→));③當(dāng)λ>0時(shí),λa=λeq\o(OA,\s\up6(→))=eq\o(PQ,\s\up6(→));當(dāng)λ<0時(shí),λa=λeq\o(OA,\s\up6(→))=eq\o(MN,\s\up6(→));λ=0時(shí),λa=0.(2)空間向量線性運(yùn)算的運(yùn)算律(其中λ,μ∈R)①交換律:a+b=b+a;②結(jié)合律:(a+b)+c=a+(b+c),λ(μa)=(λμ)a;③分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.4.空間向量共線的充要條件(1)空間向量共線的充要條件:對任意兩個(gè)空間向量a,b(b≠0),a∥b的充要條件是存在實(shí)數(shù)λ,使a=λb.(2)方向向量:如圖,O是直線l上一點(diǎn),在直線l上取非零向量a,則對于直線l上任意一點(diǎn)P,由數(shù)乘向量的定義及向量共線的充要條件可知,存在實(shí)數(shù)λ,使得eq\o(OP,\s\up6(→))=λa,我們把與向量a平行的非零向量稱為直線l的方向向量.因?yàn)榱阆蛄?=0·a,所以零向量和空間任一向量a是共線(平行)向量,這一性質(zhì)使共線向量不具有傳遞性,即若a∥b,b∥c,則a∥c不一定成立.因?yàn)楫?dāng)b=0時(shí),a∥0,0∥c,但a與c不一定共線.5.空間向量共面的充要條件(1)向量和直線平行:如果表示向量a的有向線段eq\o(OA,\s\up6(→))所在的直線OA與直線l平行或重合,那么稱向量a平行于直線l.(2)向量和平面平行:如果表示向量a的有向線段eq\o(OA,\s\up6(→))所在的直線OA平行于平面α或在平面α內(nèi),那么稱向量a平行于平面α.(3)共面向量:平行于同一個(gè)平面的向量,叫做共面向量.(4)空間向量共面的充要條件:如果兩個(gè)向量a,b不共線,那么向量p與向量a,b共面的充要條件是存在唯一的有序?qū)崝?shù)對(x,y),使p=xa+yb.自主檢驗(yàn)1.思考辨析,判斷正誤(1)若a=-b,則|a|=|b|.(√)(2)若兩個(gè)向量的終點(diǎn)重合,則這兩個(gè)向量的方向相同.(×)〖提示〗兩個(gè)向量的終點(diǎn)重合,起點(diǎn)不知如何,則其方向的關(guān)系不能確定.(3)零向量與任意向量平行.(√)2.在正方體ABCD-A1B1C1D1中,eq\o(AB,\s\up6(→))=a,eq\o(AD,\s\up6(→))=b,eq\o(AA1,\s\up6(→))=c,則eq\o(AC1,\s\up6(→))=()A.a+b+c B.a-b+c C.a+b-c D.a-b-c〖答案〗A〖解析〗eq\o(AC1,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(CC1,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→))=a+b+c.3.在下列條件中,使點(diǎn)M與點(diǎn)A,B,C一定共面的是()A.eq\o(OM,\s\up6(→))=3eq\o(OA,\s\up6(→))-2eq\o(OB,\s\up6(→))-eq\o(OC,\s\up6(→)) B.eq\o(OM,\s\up6(→))+eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0C.eq\o(MA,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(MC,\s\up6(→))=0 D.eq\o(OM,\s\up6(→))=eq\f(1,4)eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→))+eq\f(1,2)eq\o(OC,\s\up6(→))〖答案〗C〖解析〗∵eq\o(MA,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(MC,\s\up6(→))=0,∴eq\o(MA,\s\up6(→))=-eq\o(MB,\s\up6(→))-eq\o(MC,\s\up6(→)),∴點(diǎn)M與點(diǎn)A,B,C必共面.4.化簡:eq\o(AB,\s\up6(→))+eq\o(CD,\s\up6(→))-eq\o(CB,\s\up6(→))=________.〖答案〗eq\o(AD,\s\up6(→))〖解析〗eq\o(AB,\s\up6(→))+eq\o(CD,\s\up6(→))-eq\o(CB,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(CB,\s\up6(→))+eq\o(CD,\s\up6(→))=(eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→)))+eq\o(CD,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(CD,\s\up6(→))=eq\o(AD,\s\up6(→)).題型一空間向量的概念〖例1〗(1)下列關(guān)于空間向量的說法中正確的是()A.若向量a,b平行,則a,b所在的直線平行B.若|a|=|b|,則a,b的長度相等而方向相同或相反C.若向量eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))滿足|eq\o(AB,\s\up6(→))|>|eq\o(CD,\s\up6(→))|,則eq\o(AB,\s\up6(→))>eq\o(CD,\s\up6(→))D.相等向量其方向必相同(2)(多選題)下列命題為真命題的是()A.若空間向量a,b滿足|a|=|b|,則a=bB.在正方體ABCD-A1B1C1D1中,必有eq\o(AC,\s\up6(→))=eq\o(A1C1,\s\up6(→))C.若空間向量m,n,p滿足m=n,n=p,則m=pD.空間中任意兩個(gè)單位向量必相等〖答案〗(1)D(2)BC〖解析〗(1)A中,向量a,b平行,則a,b所在的直線平行或重合;B中,|a|=|b|只能說明a,b的長度相等而方向不確定;C中,向量不能比較大小,故選D.(2)A為假命題,根據(jù)向量相等的定義知,兩向量相等,不僅模要相等,而且還要方向相同,而A中向量a與b的方向不一定相同;B為真命題,eq\o(AC,\s\up6(→))與eq\o(A1C1,\s\up6(→))的方向相同,模也相等,故eq\o(AC,\s\up6(→))=eq\o(A1C1,\s\up6(→));C為真命題,向量的相等滿足傳遞性;D為假命題,空間中任意兩個(gè)單位向量的模均為1,但方向不一定相同,故不一定相等,所以選BC.思維升華空間向量的概念與平面向量的概念相類似,平面向量的其他相關(guān)概念,如向量的模、相等向量、平行向量、相反向量、單位向量等都可以拓展為空間向量的相關(guān)概念.〖訓(xùn)練1〗如圖所示,以長方體ABCD-A1B1C1D1的八個(gè)頂點(diǎn)的兩點(diǎn)為起點(diǎn)和終點(diǎn)的向量中,(1)試寫出與eq\o(AB,\s\up6(→))相等的所有向量;(2)試寫出eq\o(AA1,\s\up6(→))的相反向量;(3)若AB=AD=2,AA1=1,求向量eq\o(AC1,\s\up6(→))的模.解(1)與向量eq\o(AB,\s\up6(→))相等的所有向量(除它自身之外)有eq\o(A1B1,\s\up6(→)),eq\o(DC,\s\up6(→))及eq\o(D1C1,\s\up6(→))共3個(gè).(2)向量eq\o(AA1,\s\up6(→))的相反向量為eq\o(A1A,\s\up6(→)),eq\o(B1B,\s\up6(→)),eq\o(C1C,\s\up6(→)),eq\o(D1D,\s\up6(→)).(3)|eq\o(AC1,\s\up6(→))|=3.題型二空間向量的線性運(yùn)算〖例2〗如圖,在平行六面體ABCD-A1B1C1D1中,設(shè)eq\o(AA1,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,eq\o(AD,\s\up6(→))=c,M,N,P分別是AA1,BC,C1D1的中點(diǎn),試用a,b,c表示以下各向量:(1)eq\o(AP,\s\up6(→));(2)eq\o(A1N,\s\up6(→));(3)eq\o(MP,\s\up6(→))+eq\o(NC1,\s\up6(→)).解(1)∵P是C1D1的中點(diǎn),∴eq\o(AP,\s\up6(→))=eq\o(AA1,\s\up6(→))+eq\o(A1D1,\s\up6(→))+eq\o(D1P,\s\up6(→))=a+eq\o(AD,\s\up6(→))+eq\f(1,2)eq\o(D1C1,\s\up6(→))=a+c+eq\f(1,2)eq\o(AB,\s\up6(→))=a+c+eq\f(1,2)b.(2)∵N是BC的中點(diǎn),∴eq\o(A1N,\s\up6(→))=eq\o(A1A,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(BN,\s\up6(→))=-a+b+eq\f(1,2)eq\o(BC,\s\up6(→))=-a+b+eq\f(1,2)eq\o(AD,\s\up6(→))=-a+b+eq\f(1,2)c.(3)∵M(jìn)是AA1的中點(diǎn),∴eq\o(MP,\s\up6(→))=eq\o(MA,\s\up6(→))+eq\o(AP,\s\up6(→))=eq\f(1,2)eq\o(A1A,\s\up6(→))+eq\o(AP,\s\up6(→))=-eq\f(1,2)a+eq\b\lc\(\rc\)(\a\vs4\al\co1(a+c+\f(1,2)b))=eq\f(1,2)a+eq\f(1,2)b+c.又eq\o(NC1,\s\up6(→))=eq\o(NC,\s\up6(→))+eq\o(CC1,\s\up6(→))=eq\f(1,2)eq\o(BC,\s\up6(→))+eq\o(AA1,\s\up6(→))=eq\f(1,2)eq\o(AD,\s\up6(→))+eq\o(AA1,\s\up6(→))=eq\f(1,2)c+a,∴eq\o(MP,\s\up6(→))+eq\o(NC1,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)a+\f(1,2)b+c))+eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,2)c))=eq\f(3,2)a+eq\f(1,2)b+eq\f(3,2)c.思維升華利用數(shù)乘運(yùn)算進(jìn)行向量表示的技巧(1)數(shù)形結(jié)合:利用數(shù)乘運(yùn)算解題時(shí),要結(jié)合具體圖形,利用三角形法則、平行四邊形法則,將目標(biāo)向量轉(zhuǎn)化為已知向量.(2)明確目標(biāo):在化簡過程中要有目標(biāo)意識,巧妙運(yùn)用中點(diǎn)性質(zhì).〖訓(xùn)練2〗如圖,在長方體ABCD-A1B1C1D1中,下列各式運(yùn)算結(jié)果不為eq\o(BD1,\s\up6(→))的是()A.eq\o(A1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))-eq\o(AB,\s\up6(→)) B.eq\o(BC,\s\up6(→))+eq\o(BB1,\s\up6(→))-eq\o(D1C1,\s\up6(→))C.eq\o(DD1,\s\up6(→))-eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)) D.eq\o(B1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))+eq\o(DD1,\s\up6(→))〖答案〗D〖解析〗A中,eq\o(A1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(AD1,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(BD1,\s\up6(→));B中,eq\o(BC,\s\up6(→))+eq\o(BB1,\s\up6(→))-eq\o(D1C1,\s\up6(→))=eq\o(BC1,\s\up6(→))+eq\o(C1D1,\s\up6(→))=eq\o(BD1,\s\up6(→));C中,eq\o(DD1,\s\up6(→))-eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\o(AD,\s\up6(→))+eq\o(DD1,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(AD1,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(BD1,\s\up6(→));D中,eq\o(B1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))+eq\o(DD1,\s\up6(→))=eq\o(BD,\s\up6(→))+eq\o(AA1,\s\up6(→))+eq\o(DD1,\s\up6(→))=eq\o(BD1,\s\up6(→))+eq\o(AA1,\s\up6(→))≠eq\o(BD1,\s\up6(→)),故選D.題型三向量共線問題〖例3〗如圖,四邊形ABCD和ABEF都是平行四邊形,且不共面,M,N分別是AC,BF的中點(diǎn),則eq\o(CE,\s\up6(→))與eq\o(MN,\s\up6(→))是否共線?解法一∵M(jìn),N分別是AC,BF的中點(diǎn),且四邊形ABCD和ABEF都是平行四邊形,∴eq\o(MN,\s\up6(→))=eq\o(MA,\s\up6(→))+eq\o(AF,\s\up6(→))+eq\o(FN,\s\up6(→))=eq\f(1,2)eq\o(CA,\s\up6(→))+eq\o(AF,\s\up6(→))+eq\f(1,2)eq\o(FB,\s\up6(→)).①又∵eq\o(MN,\s\up6(→))=eq\o(MC,\s\up6(→))+eq\o(CE,\s\up6(→))+eq\o(EB,\s\up6(→))+eq\o(BN,\s\up6(→))=-eq\f(1,2)eq\o(CA,\s\up6(→))+eq\o(CE,\s\up6(→))-eq\o(AF,\s\up6(→))-eq\f(1,2)eq\o(FB,\s\up6(→)),②①+②得2eq\o(MN,\s\up6(→))=eq\o(CE,\s\up6(→)),∴eq\o(CE,\s\up6(→))∥eq\o(MN,\s\up6(→)),即eq\o(CE,\s\up6(→))與eq\o(MN,\s\up6(→))共線.法二∵M(jìn),N分別是AC,BF的中點(diǎn),且四邊形ABCD和ABEF都是平行四邊形,∴eq\o(MN,\s\up6(→))=eq\o(AN,\s\up6(→))-eq\o(AM,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AF,\s\up6(→)))-eq\f(1,2)eq\o(AC,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AF,\s\up6(→)))-eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))=eq\f(1,2)(eq\o(AF,\s\up6(→))-eq\o(AD,\s\up6(→)))=eq\f(1,2)(eq\o(BE,\s\up6(→))-eq\o(BC,\s\up6(→)))=eq\f(1,2)eq\o(CE,\s\up6(→)).∴eq\o(MN,\s\up6(→))∥eq\o(CE,\s\up6(→)),即eq\o(MN,\s\up6(→))與eq\o(CE,\s\up6(→))共線.思維升華判定向量共線就是充分利用已知條件找到實(shí)數(shù)λ,使a=λb成立,或充分利用空間向量的運(yùn)算法則,結(jié)合具體圖形通過化簡,計(jì)算得出a=λb,從而得到a∥b.〖訓(xùn)練3〗如圖所示,在空間四邊形ABCD中,點(diǎn)E,F(xiàn)分別是AB,CD的中點(diǎn),請判斷向量eq\o(EF,\s\up6(→))與eq\o(AD,\s\up6(→))+eq\o(BC,\s\up6(→))是否共線.解設(shè)AC的中點(diǎn)為G,連接EG,F(xiàn)G,∴eq\o(GF,\s\up6(→))=eq\f(1,2)eq\o(AD,\s\up6(→)),eq\o(EG,\s\up6(→))=eq\f(1,2)eq\o(BC,\s\up6(→)),∴eq\o(EF,\s\up6(→))=eq\o(EG,\s\up6(→))+eq\o(GF,\s\up6(→))=eq\f(1,2)eq\o(BC,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→))=eq\f(1,2)(eq\o(AD,\s\up6(→))+eq\o(BC,\s\up6(→))),∴eq\o(EF,\s\up6(→))與eq\o(AD,\s\up6(→))+eq\o(BC,\s\up6(→))共線.題型四向量共面問題〖例4〗已知A,B,M三點(diǎn)不共線,對于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A,B,M一定共面.(1)eq\o(OM,\s\up6(→))+eq\o(OB,\s\up6(→))=3eq\o(OP,\s\up6(→))-eq\o(OA,\s\up6(→));(2)eq\o(OP,\s\up6(→))=4eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))-eq\o(OM,\s\up6(→)).解(1)∵eq\o(OM,\s\up6(→))+eq\o(OB,\s\up6(→))=3eq\o(OP,\s\up6(→))-eq\o(OA,\s\up6(→)),∴eq\o(OP,\s\up6(→))=eq\o(OM,\s\up6(→))+(eq\o(OA,\s\up6(→))-eq\o(OP,\s\up6(→)))+(eq\o(OB,\s\up6(→))-eq\o(OP,\s\up6(→)))=eq\o(OM,\s\up6(→))+eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→)),∴eq\o(OP,\s\up6(→))-eq\o(OM,\s\up6(→))=eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→)),∴eq\o(MP,\s\up6(→))=eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→)),∴eq\o(MP,\s\up6(→)),eq\o(PA,\s\up6(→)),eq\o(PB,\s\up6(→))為共面向量,又eq\o(MP,\s\up6(→)),eq\o(PA,\s\up6(→)),eq\o(PB,\s\up6(→))過同一點(diǎn)P,∴P與A,B,M共面.(2)∵eq\o(OP,\s\up6(→))=4eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))-eq\o(OM,\s\up6(→)),∴eq\o(OP,\s\up6(→))=2eq\o(OA,\s\up6(→))+(eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→)))+(eq\o(OA,\s\up6(→))-eq\o(OM,\s\up6(→)))=2eq\o(OA,\s\up6(→))+eq\o(BA,\s\up6(→))+eq\o(MA,\s\up6(→)),根據(jù)空間向量共面的充要條件可知,點(diǎn)P位于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論