![2024屆安順市重點(diǎn)中學(xué)高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第1頁(yè)](http://file4.renrendoc.com/view12/M05/03/16/wKhkGWczDIyAPTgrAAG9xYjTCVY448.jpg)
![2024屆安順市重點(diǎn)中學(xué)高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第2頁(yè)](http://file4.renrendoc.com/view12/M05/03/16/wKhkGWczDIyAPTgrAAG9xYjTCVY4482.jpg)
![2024屆安順市重點(diǎn)中學(xué)高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第3頁(yè)](http://file4.renrendoc.com/view12/M05/03/16/wKhkGWczDIyAPTgrAAG9xYjTCVY4483.jpg)
![2024屆安順市重點(diǎn)中學(xué)高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第4頁(yè)](http://file4.renrendoc.com/view12/M05/03/16/wKhkGWczDIyAPTgrAAG9xYjTCVY4484.jpg)
![2024屆安順市重點(diǎn)中學(xué)高三第一次六校聯(lián)考數(shù)學(xué)試題試卷_第5頁(yè)](http://file4.renrendoc.com/view12/M05/03/16/wKhkGWczDIyAPTgrAAG9xYjTCVY4485.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023屆安順市重點(diǎn)中學(xué)高三第一次六校聯(lián)考數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.2.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.23.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B4.已知集合A,B=,則A∩B=A. B. C. D.5.已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于()A. B. C. D.6.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.87.a(chǎn)為正實(shí)數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.18.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]9.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.10.已知雙曲線:,,為其左、右焦點(diǎn),直線過(guò)右焦點(diǎn),與雙曲線的右支交于,兩點(diǎn),且點(diǎn)在軸上方,若,則直線的斜率為()A. B. C. D.11.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線經(jīng)過(guò)點(diǎn),則該雙曲線的離心率為_(kāi)______.14.近年來(lái),新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場(chǎng)上影響力不斷增大.動(dòng)力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動(dòng)新能源汽車發(fā)展的主要?jiǎng)恿?假定現(xiàn)在市售的某款新能源汽車上,車載動(dòng)力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過(guò)了2000次充電,那么他的車能夠充電2500次的概率為_(kāi)_____.15.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識(shí)競(jìng)賽,則選出的名同學(xué)中恰好名男生名女生的概率為_(kāi)__________.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前列項(xiàng)和為,已知.(1)求數(shù)列的通項(xiàng)公式;(2)求證:.18.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.19.(12分)在銳角三角形中,角的對(duì)邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.20.(12分)某景點(diǎn)上山共有級(jí)臺(tái)階,寓意長(zhǎng)長(zhǎng)久久.甲上臺(tái)階時(shí),可以一步走一個(gè)臺(tái)階,也可以一步走兩個(gè)臺(tái)階,若甲每步上一個(gè)臺(tái)階的概率為,每步上兩個(gè)臺(tái)階的概率為.為了簡(jiǎn)便描述問(wèn)題,我們約定,甲從級(jí)臺(tái)階開(kāi)始向上走,一步走一個(gè)臺(tái)階記分,一步走兩個(gè)臺(tái)階記分,記甲登上第個(gè)臺(tái)階的概率為,其中,且.(1)若甲走步時(shí)所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過(guò)程中,恰好登上第級(jí)臺(tái)階的概率.21.(12分)一張邊長(zhǎng)為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開(kāi),再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無(wú)蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開(kāi)的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無(wú)蓋三棱錐容器的容積最大.22.(10分)已知.(1)已知關(guān)于的不等式有實(shí)數(shù)解,求的取值范圍;(2)求不等式的解集.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點(diǎn)睛】本題考查程序框圖.解題可模擬程序運(yùn)行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.2.B【解析】由題意或4,則,故選B.3.C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系4.A【解析】
先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點(diǎn)睛】一般地,把不等式組放在數(shù)軸中得出解集。5.B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.6.D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒(méi)有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.7.B【解析】
,選B.8.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.9.A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過(guò)程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問(wèn)題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.10.D【解析】
由|AF2|=3|BF2|,可得.設(shè)直線l的方程x=my+,m>0,設(shè),,即y1=﹣3y2①,聯(lián)立直線l與曲線C,得y1+y2=-②,y1y2=③,求出m的值即可求出直線的斜率.【詳解】雙曲線C:,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),則F2(,0),設(shè)直線l的方程x=my+,m>0,∵雙曲線的漸近線方程為x=±2y,∴m≠±2,設(shè)A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,聯(lián)立①②得,聯(lián)立①③得,,即:,,解得:,直線的斜率為,故選D.【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查向量知識(shí),屬于中檔題.11.C【解析】
化簡(jiǎn)得到,得到答案.【詳解】,故,對(duì)應(yīng)點(diǎn)在第三象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn)和對(duì)應(yīng)象限,意在考查學(xué)生的計(jì)算能力.12.C【解析】
方法一:設(shè),利用拋物線的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過(guò)定點(diǎn),過(guò)分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線為,所以該雙曲線的漸近線方程為.又因?yàn)槠湟粭l漸近線經(jīng)過(guò)點(diǎn),即,則,由此可得.故答案為:.【點(diǎn)睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.14.【解析】
記“某用戶的自用新能源汽車已經(jīng)經(jīng)過(guò)了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經(jīng)經(jīng)過(guò)了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點(diǎn)睛】本題考查了條件概率的應(yīng)用,考查了學(xué)生概念理解,數(shù)學(xué)應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.15.【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點(diǎn)睛】組合數(shù)與概率的基本運(yùn)用,熟悉組合數(shù)公式16.【解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點(diǎn)睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計(jì)算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對(duì)角互補(bǔ).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見(jiàn)解析【解析】
(1)由已知可得,構(gòu)造等比數(shù)列即可求出通項(xiàng)公式;(2)當(dāng)時(shí),由,可求,時(shí),由,可證,驗(yàn)證時(shí),不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當(dāng)時(shí),,,當(dāng)時(shí),,綜上,由可得遞增,,時(shí);所以,綜上:故.【點(diǎn)睛】本題主要考查了遞推數(shù)列求通項(xiàng)公式,利用放縮法證明不等式,涉及等比數(shù)列的求和公式,屬于難題.18.(1);(2)【解析】
(1)利用零點(diǎn)分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當(dāng)且僅當(dāng)時(shí)取“=”).所以的最小值為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用柯西不等式求最值.解絕對(duì)值不等式的基本方法有零點(diǎn)分段討論法、圖象法、平方法等,利用零點(diǎn)分段討論法時(shí)注意分類點(diǎn)的合理選擇,利用平方去掉絕對(duì)值符號(hào)時(shí)注意代數(shù)式的正負(fù),而利用圖象法求解時(shí)注意圖象的正確刻畫.利用柯西不等式求最值時(shí)注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.19.(1);(2).【解析】
(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡(jiǎn)可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開(kāi)化簡(jiǎn)得,因?yàn)?故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因?yàn)闉殇J角,故可得,由正弦定理可得,又的面積為可得,解得.【點(diǎn)睛】本題主要考查了等差等比中項(xiàng)的運(yùn)用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時(shí)也考查了正弦定理與面積公式在解三角形中的運(yùn)用,屬于中檔題.20.見(jiàn)解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學(xué)期望.(2)由題可得,所以,又,,所以,所以是以為首項(xiàng),為公比的等比數(shù)列.(3)由(2)可得.21.(1),;(2)當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【解析】
(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無(wú)蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無(wú)蓋三棱
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 系泊絞車行業(yè)深度研究報(bào)告
- 氣相沉積設(shè)備項(xiàng)目可行性研究報(bào)告
- 沖壓廠勞務(wù)合同范本
- 勞務(wù)分包薪資合同范本
- 個(gè)人債務(wù)轉(zhuǎn)移合同范本
- 二手無(wú)產(chǎn)權(quán)房購(gòu)買合同范本
- 供應(yīng)飯店用品合同范例
- 2024年安全準(zhǔn)入考試復(fù)習(xí)測(cè)試卷附答案
- 專用合同范本
- 剪輯兼職合同范例
- 高教版2023年中職教科書(shū)《語(yǔ)文》(基礎(chǔ)模塊)下冊(cè)教案全冊(cè)
- 人教版英語(yǔ)七年級(jí)上冊(cè)閱讀理解專項(xiàng)訓(xùn)練16篇(含答案)
- 部編八年級(jí)下冊(cè)道德與法治第七課-尊重自由平等教案
- 天然氣加氣站安全事故的案例培訓(xùn)課件
- 古樹(shù)名木保護(hù)建設(shè)項(xiàng)目可行性研究報(bào)告
- DB50-T 867.36-2022 安全生產(chǎn)技術(shù)規(guī)范+第36+部分:倉(cāng)儲(chǔ)企業(yè)
- 幼小銜接學(xué)拼音
- 有限空間辨識(shí)參考目錄圖片對(duì)照版
- 成本會(huì)計(jì)第一章總論
- 橋式起重機(jī)試驗(yàn)項(xiàng)目及其內(nèi)容方法和要求
- 肺斷層解剖及CT圖像(77頁(yè))
評(píng)論
0/150
提交評(píng)論