版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州荔灣區(qū)真光中學2023-2024學年高三二模沖刺(4)數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據(jù)該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%2.已知復數(shù),則()A. B. C. D.23.已知點、.若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為()A. B. C. D.4.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.95.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2826.下列函數(shù)中,在定義域上單調(diào)遞增,且值域為的是()A. B. C. D.7.已知復數(shù)滿足,則()A. B.2 C.4 D.38.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]9.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.10.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.11.已知為定義在上的偶函數(shù),當時,,則()A. B. C. D.12.若函數(shù)有兩個極值點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.14.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.15.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.16.已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.18.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.19.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.20.(12分)已知,,,.(1)求的值;(2)求的值.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.22.(10分)已知在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.2、C【解析】
根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.3、C【解析】
設出點的坐標,以為底結合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關于的方程,求出方程的解,即可得出結論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.4、B【解析】
模擬程序運行,觀察變量值可得結論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結構,解題時可模擬程序運行,觀察變量值,從而得出結論.5、B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題6、B【解析】
分別作出各個選項中的函數(shù)的圖象,根據(jù)圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤;對于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯誤.故選:.【點睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎題.7、A【解析】
由復數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點睛】本題考查復數(shù)的除法法則,考查復數(shù)模的運算,屬于基礎題.8、D【解析】
由題意作出可行域,轉化目標函數(shù)為連接點和可行域內(nèi)的點的直線斜率的倒數(shù),數(shù)形結合即可得解.【詳解】由題意作出可行域,如圖,目標函數(shù)可表示連接點和可行域內(nèi)的點的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點睛】本題考查了非線性規(guī)劃的應用,屬于基礎題.9、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數(shù)學運算的能力,屬于基礎題.10、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.11、D【解析】
判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學生對于函數(shù)性質(zhì)的靈活運用.12、A【解析】試題分析:由題意得有兩個不相等的實數(shù)根,所以必有解,則,且,∴.考點:利用導數(shù)研究函數(shù)極值點【方法點睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導數(shù)為0的點,再判斷導數(shù)為0的點的左、右兩側的導數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側的符號―→下結論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側的導數(shù)值符號相反.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設的外接圓圓心為,則在直線上且設長方形的外接圓圓心為,則在上且.設外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標系,由題意知,在平面中且設,則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.14、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關于關于參數(shù)的關系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結合參數(shù)的范圍問題進行分析.屬于難題.15、【解析】
由題意欲使圓柱側面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側面積的最值,考查函數(shù)與方程思想、轉化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉化為函數(shù)的最值問題.16、【解析】
作出圖象,求出方程的根,分類討論的正負,數(shù)形結合即可.【詳解】當時,令,解得,所以當時,,則單調(diào)遞增,當時,,則單調(diào)遞減,當時,單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據(jù)圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數(shù)零點與函數(shù)圖象的關系,考查利用導數(shù)研究函數(shù)的單調(diào)性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)1【解析】
(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.18、(1);(2)【解析】
(1)直接利用轉換關系的應用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數(shù)的關系式的應用求出結果.【詳解】解:(1)直線的參數(shù)方程為(為參數(shù)),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數(shù)方程為(為參數(shù)),轉換為標準式為(為參數(shù)),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數(shù)方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數(shù)方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.19、(1)(2)證明見解析;定點坐標為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時滿足∴∴直線恒過定點【點睛】涉及橢圓的弦長、中點、距離等相關問題時,一般利用根與系數(shù)的關系采用“設而不求”“整體帶入”等解法.20、(1)(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市照明項目LED路燈購銷合同
- 2024年建筑工程分包協(xié)議書
- 2024年云計算服務互操作性測試合同
- 2024廣告發(fā)布委托合同模板樣本
- 2024年工程質(zhì)量檢測合同標準
- 2024年度物業(yè)服務合同:日常房屋租住過程中的管理與維護
- 2024年度旅游開發(fā)項目合同
- 2024年度影視制作與發(fā)布協(xié)議
- 兒子結婚上父親致辭
- 習慣為主題的演講稿3篇
- 電氣自動化專業(yè)個人職業(yè)生涯規(guī)劃書
- 國信集團招聘試題
- 個人招生計劃方案
- 2024年科技創(chuàng)新崛起
- 大學生職業(yè)生涯規(guī)劃成長賽道 (第二版)
- 山藥的栽培技術
- 浙江省紹興市諸暨市2023-2024學年七年級上學期期末語文試題
- 酒精性肝硬化查房
- 2024年學校禁毒安全工作計劃
- 透析中合并心衰護理課件
- 初中數(shù)學因式分解練習題100題附詳解
評論
0/150
提交評論