數(shù)列教學(xué)反思7篇_第1頁
數(shù)列教學(xué)反思7篇_第2頁
數(shù)列教學(xué)反思7篇_第3頁
數(shù)列教學(xué)反思7篇_第4頁
數(shù)列教學(xué)反思7篇_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第數(shù)列教學(xué)反思7篇作為一名老師,大家需要不斷地做教學(xué)反思,教師要善于抓住有利于教學(xué)計劃實施的因素,因勢利導(dǎo),這樣才能寫出優(yōu)秀的教學(xué)反思,XX小編今天就為您帶來了數(shù)列教學(xué)反思7篇,相信一定會對你有所幫助。

數(shù)列教學(xué)反思篇1

本節(jié)課有意識地引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項公式的探求思路,一方面使學(xué)生溫故舊知識,另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。

通過引導(dǎo)學(xué)生對幾個具體數(shù)列特點的探索,然后一般地歸納這類數(shù)列的特點,進(jìn)而給出等比數(shù)列的定義,并將其數(shù)學(xué)符號化,再對幾個具體數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識規(guī)律,使學(xué)生體會觀察、類比、歸納等合情推理方法的運(yùn)用。培養(yǎng)學(xué)生觀察分析能力,抽象概括能力。

繼引導(dǎo)學(xué)生為等比數(shù)列下定義之后,探索等比數(shù)列的通項公式又是一個重點。這里,我們通過引導(dǎo)學(xué)生試著求出a2,a3,a4,進(jìn)而歸納猜想出an=a1qn-1,然后進(jìn)行檢驗證明,即通過既教證明,又教猜想,旨在揭示科學(xué)實驗的規(guī)律,從而暴露知識的形成過程,體現(xiàn)數(shù)學(xué)發(fā)現(xiàn)的本質(zhì),培養(yǎng)學(xué)生合情推理能力、邏輯推理能力、科學(xué)的思維方式、實事求是的科學(xué)態(tài)度及勇于探索的精神等個性品質(zhì)。

試驗——猜想——驗證——證明,這是探求真理的有效途徑之一。試求幾個簡單的結(jié)果是必要的,它是猜想的依據(jù),正如波利亞指出的那樣:“首先嘗試最簡單的情形是有道理的。即使我們被迫最后返回到一種比較周密的較為復(fù)雜性研究,那以前最簡單情形的研究也可以當(dāng)作一種有用的準(zhǔn)備?!睆哪撤N意義上說,猜想的發(fā)現(xiàn)的先導(dǎo),驗證猜想的正確性可使猜想變得更可靠,而經(jīng)過證明正確了的命題終于使猜想變?yōu)榱苏胬?。這一過程中,各類學(xué)生都有問題可想,有話可說,有事可做,學(xué)生的思維積極性被極大地調(diào)動了起來。

通項公式的一般形式an=amqn-m(am≠0,a≠0,n,m∈n+)的探求,一方面是前面得出的通項公式的簡單應(yīng)用;另一方面是對求出的通項公式的推廣,特別是限制條件“n>m”的去掉,具有一定的創(chuàng)造性,是值得鼓勵和稱贊的。

學(xué)生自覺、主動地要求獲取知識與教師向?qū)W生灌輸知識的效果是截然不同的。如何激發(fā)學(xué)生的求知欲是教學(xué)設(shè)計中必須注意的一個問題。在引導(dǎo)學(xué)生探索等比數(shù)列通項公式時,我們通過對一個例子中a1999求解困境的設(shè)置,以激發(fā)學(xué)生探求等比數(shù)列通項公式的欲望。這顯然要比直接告訴學(xué)生“通項公式多么重要”更有說服力。

值得一提的是,本節(jié)課的教學(xué)中,我們不但教學(xué)生進(jìn)行知識(等差數(shù)列與等比數(shù)列)的類比,而且還教學(xué)生方法(探求問題的思路)的類比。這里的“教”,實際上是啟發(fā)引導(dǎo)學(xué)生“想”與“說”,這是符合“重視知識的產(chǎn)生、發(fā)展與深化過程”的現(xiàn)代教學(xué)原則的。

數(shù)列教學(xué)反思篇2

1.關(guān)于教學(xué)目標(biāo)的制定

未來社會對人才素質(zhì)的要求是多方面的,因此,在全面推進(jìn)素質(zhì)教育的今天,課堂教學(xué)的目標(biāo)應(yīng)該是多元化的。

(1)數(shù)列的概念、通項公式是本章的重點之一,因此,作為等比數(shù)列的起始課,理所當(dāng)然地應(yīng)將等比數(shù)列的定義,通項公式以及等比數(shù)列的判定作為教學(xué)目標(biāo)之一。

(2)合情推理方法的運(yùn)用,邏輯思維能力的提高以及良好個性品質(zhì)的培養(yǎng),這是教學(xué)大綱要求高中數(shù)學(xué)教學(xué)達(dá)到的一個顯著目標(biāo),這里教學(xué)目標(biāo)2和3的制定,正是據(jù)于這樣的大綱精神。

2.關(guān)于教學(xué)重點和難點的確定

從全面提高學(xué)生的素質(zhì)考慮,本節(jié)課把等比數(shù)列定義及通項公式的探索、發(fā)現(xiàn)、創(chuàng)新等思維過程的暴露,知識形成過程的揭示作為教學(xué)重點,同時,由于“思維過程的暴露,知識形成過程的揭示”不像將知識點和盤托出那么容易,而是要求教師精心設(shè)計問題層次,由淺入深,循序漸進(jìn),不斷地激發(fā)學(xué)生思維的積極性和創(chuàng)造性,使學(xué)生自行發(fā)現(xiàn)知識?!皠?chuàng)造”知識。這是對教師,也是對學(xué)生高層次的要求,因而是教學(xué)的難點之一。

3.關(guān)于教學(xué)方法的選擇

教師是教學(xué)的主導(dǎo),學(xué)生是學(xué)習(xí)的主體,如何根據(jù)教材內(nèi)容,創(chuàng)設(shè)良好的教學(xué)情況,引導(dǎo)學(xué)生積極主動地參與課堂教學(xué)的全過程,使學(xué)生在開放、民主、愉悅、和諧的教學(xué)氛圍中獲取新知,是教師設(shè)計教法時所必須認(rèn)真考慮的。在講本節(jié)課內(nèi)容之前,學(xué)生對數(shù)列,特別是等差數(shù)列的定義、通項公式等知識內(nèi)容及其探求的思路,已有了較深刻的理解。而等比數(shù)列的有關(guān)知識內(nèi)容的探求思路與等差數(shù)列是類似的,因此采用啟發(fā)式、談話式的教學(xué)方法,引導(dǎo)學(xué)生進(jìn)行類比推理可以使學(xué)生不知不覺地參與教學(xué)的全過程,為使學(xué)生自己探索發(fā)現(xiàn)等比數(shù)列的有關(guān)知識營造了良好的氛圍。

4.關(guān)于教學(xué)過程的設(shè)計

本節(jié)課按如下四個方面展開:

(1)復(fù)習(xí)等差數(shù)列的定義,通項公式及探索思路;

(2)等比數(shù)列的定義及其幾個特例的判定;

(3)等比數(shù)列通項公式的探求;

(4)通項公式的一般形式。

數(shù)列教學(xué)反思篇3

今天講授《等比數(shù)列前n項和公式》。引導(dǎo)學(xué)生探究等比數(shù)列前n項和公式是重要內(nèi)容。在探究公式的計算方法時,讓學(xué)生通過觀察、分析、類比、聯(lián)想解決問題。有意識地使學(xué)生在推導(dǎo)過程中,忽略公比q=1和q≠1的情形,從而突破了公比的q=1和q≠1難點,學(xué)生在推導(dǎo)公式中通過自己探究解決了“錯位相減”的重要數(shù)學(xué)思想。高中新課程正強(qiáng)調(diào)對數(shù)學(xué)本質(zhì)的認(rèn)識,強(qiáng)調(diào)返璞歸真,努力揭示數(shù)學(xué)概念、法則、結(jié)論的發(fā)展過程和本質(zhì)。

本節(jié)課后還有以下體會:

(1)以學(xué)生為主體

愛因斯坦說過:“單純的專業(yè)知識灌輸只能產(chǎn)生機(jī)器,而不可能造就一個和諧發(fā)展的人才”,因此數(shù)學(xué)學(xué)習(xí)的核心是思考,離開思考就沒有真正的數(shù)學(xué)。這節(jié)課,通過創(chuàng)設(shè)了一系列的問題情景,邊展示,邊提問,讓學(xué)生邊觀察,邊思考,邊討論。鼓勵學(xué)生積極參與教學(xué)活動,包括思維參與和行為參與,鼓勵學(xué)生發(fā)現(xiàn)數(shù)學(xué)的規(guī)律和問題解決的途徑,使他們經(jīng)歷知識形成的過程。在教學(xué)難點處適當(dāng)放慢節(jié)奏,給學(xué)生充分的時間進(jìn)行思考與討論,讓學(xué)生做課堂的主人,充分發(fā)表自己的意見。激勵的語言、輕松愉悅的氛圍、民主的教學(xué)方式,使學(xué)生品嘗到類比成功的歡愉。

(2)巧設(shè)情景,倡導(dǎo)自主探索、合作交流的學(xué)習(xí)方式

學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于接受、記憶、模仿和練習(xí),還應(yīng)倡導(dǎo)自主探索、合作交流等學(xué)習(xí)方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下,不斷經(jīng)歷感知、觀察發(fā)現(xiàn)、歸納類比、抽象概括、演繹證明、反思與建構(gòu)等思維過程,體驗等比數(shù)列前n項和公式的“在創(chuàng)造”過程,讓學(xué)生在生生互動、師生互動中掌握知識,提高解決問題的能力。

蘇霍姆林說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者?!北竟?jié)課正是抓住學(xué)生的這一心理需求,從新課引入到課后作業(yè),創(chuàng)設(shè)了一系列“數(shù)學(xué)探究”活動,為學(xué)生開展積極主動的、多樣的學(xué)習(xí)方式,創(chuàng)設(shè)有利條件,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并鼓勵學(xué)生在學(xué)習(xí)過程中,養(yǎng)成獨立思考,積極探索的習(xí)慣。

數(shù)列教學(xué)反思篇4

探究式教學(xué)走進(jìn)課堂為學(xué)生的學(xué)習(xí)提供了多樣化的活動方式,這里我充分利用多媒體手段,并采用了學(xué)生朗讀,小組討論合作交流并匯報成果,個別做答,集體做答,學(xué)生演板,學(xué)生說教師寫等方法,感覺學(xué)生對定義和通項公式掌握不錯,對一些基本問題,能按照要求利用等差數(shù)列的通項公式知三求一,體會方程的思想。在推導(dǎo)等差數(shù)列的通項公式時選用了不完全歸納法與疊加法,培養(yǎng)了學(xué)生的推理論證能力,強(qiáng)調(diào)了思維的嚴(yán)謹(jǐn)性。不過在教學(xué)中還是存在一些不足:

1、在回答等差數(shù)列的特點時,有的同學(xué)會說“前一項與后一項的差為常數(shù)”,那么我們講數(shù)列從函數(shù)的觀點來看是當(dāng)自變量從小到大的依次取值時,所對應(yīng)的一列函數(shù)值,所以我們以從前往后發(fā)展的眼光來看用“后一項與前一項的差為常數(shù)”更為妥當(dāng)。

2、“如果a,a,b三個數(shù)成等差數(shù)列,這時我們稱a為a與b的等差中項”。其實a也是b與a的等差中項,即b,a,a三個數(shù)成等差數(shù)列。

靜下心來思考,在今后的.教學(xué)中其實還應(yīng)該注意:

1、在證明等差數(shù)列時,學(xué)生往往用有限的幾個連續(xù)兩項的差為常數(shù)就得到此數(shù)列為等差數(shù)列的結(jié)論,其實這是一種不完全的歸納,是由特殊到一般,這種方法是不嚴(yán)密的。應(yīng)該用等差數(shù)列的

數(shù)學(xué)表達(dá)式來證明。怎樣用等差數(shù)列的數(shù)學(xué)表達(dá)式來證明等差數(shù)列還需要利用課堂時間進(jìn)行專門訓(xùn)練,因為在高考有關(guān)數(shù)列的考題中往往第一問就是用定義證明等差數(shù)列。

2、用數(shù)學(xué)建模解決實際問題時絕不是單純的幾個計算而已,一定要強(qiáng)調(diào)格式,解應(yīng)用題,數(shù)學(xué)模型一定要交代,而且要交代清楚,平時的訓(xùn)練中不能忽略這個問題,在對答案時要把文字部分反復(fù)幾遍要學(xué)生用筆記在解答過程中,這樣他們才能引起重視,以后學(xué)習(xí)解概率題時不會丟掉必要的文字?jǐn)⑹觥?/p>

數(shù)列教學(xué)反思篇5

等差數(shù)列這節(jié)我們已經(jīng)學(xué)習(xí)完了,回過頭清理一下,感覺學(xué)生對定義和通項公式掌握不錯,對一些基本問題,能按照要求轉(zhuǎn)化為首項和公差來處理;能使用簡單的性質(zhì);對五個基本量之間的轉(zhuǎn)化比較靈活;課堂展示、質(zhì)疑氣氛活躍。重要的一個原因是數(shù)列主要解決是數(shù)的問題,求數(shù)列的通項實質(zhì)是尋找一列數(shù)所具有的規(guī)律,這一部分與學(xué)生以前學(xué)過的找規(guī)律問題類似,因而學(xué)起來輕松有興趣,他們也有對其進(jìn)行探究的熱情,如,學(xué)生由定義推導(dǎo)出通項公式an=a1+(n-1)d,an-am=(n-m)d,若m+n=p+q,則an+am=ap+aq等。培養(yǎng)了學(xué)生的推理論證能力和思維的嚴(yán)謹(jǐn)性。學(xué)生解題具有一定的規(guī)范性。

但是也存在著一些不盡人意的地方,學(xué)生對題目中的條件不能用在恰當(dāng)?shù)奈恢茫嬎隳芰τ写M(jìn)一步培養(yǎng),對證明一個數(shù)列是等差數(shù)列,受課本例題的影響,過程復(fù)雜,寫成an+1-an=an-an-1,沒有抓住定義的`內(nèi)涵,將問題的形式簡單化,寫成an+1-an=常數(shù),因而在做題時出現(xiàn)3an+1-3an=2,這樣的式子看不出此數(shù)列是等差數(shù)列。對等差數(shù)列前n項和的含義的理解不夠透徹,導(dǎo)致奇數(shù)項和與偶數(shù)項和不能正確表達(dá)。對求等差數(shù)列前n項的最值問題,有求和公式求最值比較熟練,但從通項研究最值問題不夠熟練。針對以上問題,我們將在后續(xù)的等比數(shù)列的教學(xué)中有意識地進(jìn)行針對性的訓(xùn)練,力求使學(xué)生對重點內(nèi)容和重要方法熟練掌握。

數(shù)列教學(xué)反思篇6

高三復(fù)習(xí)課以其龐大的容量讓奮戰(zhàn)在一線的老師們吃盡苦頭,每位老師都有課時拮據(jù)的感嘆!而資料中涉及的知識和原有內(nèi)容沖突時,學(xué)生無所適從,參與探究獲得知識的機(jī)會偏少,老師傳授總顯得相當(dāng)匆忙,課堂更多成了教師的表演與獨白,每當(dāng)我反省學(xué)生究竟學(xué)會了那些東西時,總會汗顏;課程是按時完成了,但其有效性有多少?該讓學(xué)生更主動積極地參與課堂教學(xué),在探究中體驗知識的聯(lián)系,那怕一節(jié)課只學(xué)會一兩種題型的解決策略,也比滿堂灌,最終什么都沒學(xué)到強(qiáng)多了。而資料中涉及的知識和原有內(nèi)容沖突時,學(xué)生更是無所適從,如何把資料和課本更好結(jié)合,則是我們每一位教師必須重視的。

在《數(shù)列求和》的內(nèi)容中我最初設(shè)計了兩課時,講分組求和法、倒序相加法、裂項相消法,并引申出求通項公式的.迭加(乘)法,乘比錯位相減法,并補(bǔ)充求通項公式的待定系數(shù)法。當(dāng)我重新審視教學(xué)設(shè)計和資料時,發(fā)現(xiàn)資料中的裂項法和拆項法與我前面所講的有沖突,如何能減小沖突,且多留時間給學(xué)生思考,取得更好的效果,于是決定改變資料教學(xué)內(nèi)容,裂項法是重要的求和方法,不僅滲透了化歸的重要思想,而且也是高考的熱點問題,從最簡單的題目入手,循序漸進(jìn),或者會有不可估計的收獲吧…

數(shù)列教學(xué)反思篇7

本節(jié)課是高三一輪復(fù)習(xí)課,主要是對特殊數(shù)列求和。對于數(shù)列的復(fù)習(xí),我覺得主要是復(fù)習(xí)好兩個方面,一個是如何求數(shù)列的通項公式,另一個是如何求解數(shù)列的前n項和。

這里的求和,對學(xué)生來說是一個難度很大的內(nèi)容,因為此前學(xué)生一直是使用等差和等比數(shù)列的求和公式進(jìn)行計算的,讓他們忽然去理解和掌握錯位相減和裂項相消等方法去求和,難度可想而知,所以這堂課不僅僅是復(fù)習(xí)課,而且也是一堂新課,課題是求和,學(xué)生一看就明白,但求和的對象變了,求和的方法變了。我在教學(xué)時,尊重學(xué)生的理解和掌握能力,循序漸進(jìn),不趕進(jìn)度,學(xué)生要是不能掌握,那就再來一遍,特別是錯位相減法,學(xué)生知道什么樣的數(shù)列可以用錯位相減法,但算不出正確的結(jié)果,所以課堂上在學(xué)生板演的基礎(chǔ)上我再歸納一下做錯位相減法的題目時要注意的地方,什么地方容易錯,什么地方要注意等,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論