版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西南寧二中2024年高三第三次測(cè)評(píng)數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.下圖是我國(guó)第24~30屆奧運(yùn)獎(jiǎng)牌數(shù)的回眸和中國(guó)代表團(tuán)獎(jiǎng)牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎(jiǎng)牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)一直保持上升趨勢(shì)B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)的中位數(shù)是54.53.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.4.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q5.在中所對(duì)的邊分別是,若,則()A.37 B.13 C. D.6.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.7.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱中心為()A. B. C. D.8.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.9.過(guò)雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.10.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()11.設(shè),,,則()A. B. C. D.12.已知雙曲線,過(guò)原點(diǎn)作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點(diǎn),以線段PQ為直徑的圓過(guò)右焦點(diǎn)F,則雙曲線離心率為A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正四棱柱中,P是側(cè)棱上一點(diǎn),且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為_(kāi)_______.14.在四面體中,與都是邊長(zhǎng)為2的等邊三角形,且平面平面,則該四面體外接球的體積為_(kāi)______.15.已知函數(shù)恰好有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)___16.已知復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)的范圍為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正四棱錐中,,點(diǎn)、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長(zhǎng).18.(12分)已知,點(diǎn)分別為橢圓的左、右頂點(diǎn),直線交于另一點(diǎn)為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),總使得為銳角,求直線斜率的取值范圍.19.(12分)如圖,在三棱柱中,,,,為的中點(diǎn),且.(1)求證:平面;(2)求銳二面角的余弦值.20.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:.過(guò)點(diǎn)的直線:(為參數(shù))與曲線相交于,兩點(diǎn).(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求實(shí)數(shù)的值.21.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點(diǎn).(1)證明:平面(2)若,求二面角的余弦值.22.(10分)若正數(shù)滿足,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.2、B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)不是一直保持上升趨勢(shì),29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡(jiǎn)單題目.3、C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】因?yàn)閺挠?件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯(cuò)誤,則?p是正確的;在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M點(diǎn)睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計(jì)算公式的運(yùn)用、幾何概型的特征與計(jì)算公式的運(yùn)用等知識(shí)與方法的綜合運(yùn)用,以及分析問(wèn)題解決問(wèn)題的能力。5、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點(diǎn)睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.6、A【解析】
在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡(jiǎn)可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問(wèn)題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.7、D【解析】
試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).8、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B9、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對(duì)于求解曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).10、B【解析】
根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱軸,得出,求出的最小值與對(duì)應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對(duì)稱軸和對(duì)稱點(diǎn),在對(duì)稱軸處取得最值,對(duì)稱點(diǎn)處函數(shù)值為零,屬于較易題目.11、A【解析】
先利用換底公式將對(duì)數(shù)都化為以2為底,利用對(duì)數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.12、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)列方程,化簡(jiǎn)后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡(jiǎn)得,故,設(shè)焦點(diǎn)坐標(biāo)為,由于以為直徑的圓經(jīng)過(guò)點(diǎn),故,即,即,即,兩邊除以得,解得.故,故選B.【點(diǎn)睛】本小題主要考查直線和雙曲線的交點(diǎn),考查圓的直徑有關(guān)的幾何性質(zhì),考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)正四棱柱的底面邊長(zhǎng),高,再根據(jù)柱體、錐體的體積公式計(jì)算可得.【詳解】解:設(shè)正四棱柱的底面邊長(zhǎng),高,則,即故答案為:【點(diǎn)睛】本題考查柱體、錐體的體積計(jì)算,屬于基礎(chǔ)題.14、【解析】
先確定球心的位置,結(jié)合勾股定理可求球的半徑,進(jìn)而可得球的面積.【詳解】取的外心為,設(shè)為球心,連接,則平面,取的中點(diǎn),連接,,過(guò)做于點(diǎn),易知四邊形為矩形,連接,,設(shè),.連接,則,,三點(diǎn)共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點(diǎn)睛】本題主要考查幾何體的外接球問(wèn)題,外接球的半徑的求解一般有兩個(gè)思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長(zhǎng)方體外接球半徑是其對(duì)角線的一半.15、【解析】
恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,令,,在遞增;,遞減,遞增,時(shí),在有一個(gè)零點(diǎn),在有2個(gè)零點(diǎn);故答案為:.【點(diǎn)睛】已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍是重點(diǎn)也是難點(diǎn),這類題一般用分離參數(shù)的方法,中檔題.16、【解析】
由復(fù)數(shù)對(duì)應(yīng)的點(diǎn),在第二象限,得,且,從而求出實(shí)數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第二象限,∴,且,∴,故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點(diǎn)為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系,可用空間向量法解決問(wèn)題.(1)只要證明=0即可證明垂直;(2)設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補(bǔ)可求得.試題解析:(1)連結(jié)AC、BD交于點(diǎn)O,以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系.因?yàn)镻A=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因?yàn)椋?,所以MN⊥AD(2)解:因?yàn)镸在PA上,可設(shè)=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設(shè)平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因?yàn)槠矫鍭BD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點(diǎn):用空間向量法證垂直、求二面角.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點(diǎn)坐標(biāo),即可求得橢圓的方程;(Ⅱ)設(shè)直線,代入橢圓方程,由韋達(dá)定理,由,由為銳角,則,由向量數(shù)量積的坐標(biāo)公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設(shè)由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設(shè)方程為設(shè)由得由直線與橢圓有兩個(gè)不同的交點(diǎn)則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量數(shù)量積的坐標(biāo)運(yùn)算,韋達(dá)定理,考查計(jì)算能力,屬于中檔題.19、(1)證明見(jiàn)解析;(2).【解析】
(1)證明后可得平面,從而得,結(jié)合已知得線面垂直;(2)以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),寫出各點(diǎn)坐標(biāo),求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因?yàn)?,為中點(diǎn),所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標(biāo)原點(diǎn),以為軸,為軸,為建立空間直角坐標(biāo)系,設(shè),則,,,,,.設(shè)平面的法向量,則,即,令,則;設(shè)平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【點(diǎn)睛】本題考查證明線面垂直,解題時(shí)注意線面垂直與線線垂直的相互轉(zhuǎn)化.考查求二面角,求空間角一般是建立空間直角坐標(biāo)系,用向量法易得結(jié)論.20、(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,再根據(jù),即,利用韋達(dá)定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市風(fēng)貌設(shè)計(jì)合同(2篇)
- 深圳二手房交易合同樣本
- 港口鋅鋼欄桿安裝施工合同
- 辦公樓消防改造施工合同
- 咖啡店店長(zhǎng)聘用合同模板
- 餐飲區(qū)域租賃合同范本
- 環(huán)保行業(yè)通信網(wǎng)絡(luò)搭建合同協(xié)議書
- 野生動(dòng)物通道工程合同
- 家居裝飾倉(cāng)儲(chǔ)租賃合同
- 城市綠化景觀設(shè)計(jì)養(yǎng)護(hù)新建合同
- 輻射安全知識(shí)培訓(xùn)課件
- 2025年煙花爆竹儲(chǔ)存證考試題庫(kù)
- 江蘇省鹽城市、南京市2024-2025學(xué)年度第一學(xué)期期末調(diào)研測(cè)試高三政治試題(含答案)
- 2025年北京機(jī)場(chǎng)地服崗位招聘歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 駕校教練安全培訓(xùn)課件
- 中央2024年住房和城鄉(xiāng)建設(shè)部信息中心招聘3人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解
- ICH《M10:生物分析方法驗(yàn)證及樣品分析》
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之19:“7支持-7.2能力”(雷澤佳編制-2025B0)
- 2024秋新商務(wù)星球版地理7年級(jí)上冊(cè)教學(xué)課件 第5章 地球表層的人文環(huán)境要素 第4節(jié) 發(fā)展差異與區(qū)際聯(lián)系
- 2024-2030年全球及中國(guó)醫(yī)用除塵器行業(yè)銷售模式及盈利前景預(yù)測(cè)報(bào)告
- 落實(shí)《中小學(xué)德育工作指南》制定的實(shí)施方案(pdf版)
評(píng)論
0/150
提交評(píng)論