廣西南寧市、玉林市、貴港市等2023-2024學(xué)年高三(承智班)上-期中考試數(shù)學(xué)試題試卷_第1頁(yè)
廣西南寧市、玉林市、貴港市等2023-2024學(xué)年高三(承智班)上-期中考試數(shù)學(xué)試題試卷_第2頁(yè)
廣西南寧市、玉林市、貴港市等2023-2024學(xué)年高三(承智班)上-期中考試數(shù)學(xué)試題試卷_第3頁(yè)
廣西南寧市、玉林市、貴港市等2023-2024學(xué)年高三(承智班)上-期中考試數(shù)學(xué)試題試卷_第4頁(yè)
廣西南寧市、玉林市、貴港市等2023-2024學(xué)年高三(承智班)上-期中考試數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西南寧市、玉林市、貴港市等2023-2024學(xué)年高三(承智班)上-期中考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.2.已知,則的大小關(guān)系是()A. B. C. D.3.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.4.已知函數(shù),若函數(shù)的極大值點(diǎn)從小到大依次記為,并記相應(yīng)的極大值為,則的值為()A. B. C. D.5.若集合,則=()A. B. C. D.6.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.7.設(shè),且,則()A. B. C. D.8.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.9.已知函數(shù)的圖像上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖像上,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.511.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.12.集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.為了了解一批產(chǎn)品的長(zhǎng)度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測(cè),如圖是檢測(cè)結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長(zhǎng)度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為__________.14.定義在上的奇函數(shù)滿足,并且當(dāng)時(shí),則___15.曲線在點(diǎn)處的切線方程為__.16.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過(guò)的直線分別交橢圓于和,且,問(wèn)是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.18.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:.過(guò)點(diǎn)的直線:(為參數(shù))與曲線相交于,兩點(diǎn).(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求實(shí)數(shù)的值.19.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)某公司欲投資一新型產(chǎn)品的批量生產(chǎn),預(yù)計(jì)該產(chǎn)品的每日生產(chǎn)總成本價(jià)格)(單位:萬(wàn)元)是每日產(chǎn)量(單位:噸)的函數(shù):.(1)求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本(即生產(chǎn)過(guò)程中一段時(shí)間的總成本對(duì)該段時(shí)間產(chǎn)量的導(dǎo)數(shù));(2)記每日生產(chǎn)平均成本求證:;(3)若財(cái)團(tuán)每日注入資金可按數(shù)列(單位:億元)遞減,連續(xù)注入天,求證:這天的總投入資金大于億元.21.(12分)已知函數(shù).⑴當(dāng)時(shí),求函數(shù)的極值;⑵若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

因?yàn)椋?,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.2、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.3、B【解析】

延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.4、C【解析】

對(duì)此分段函數(shù)的第一部分進(jìn)行求導(dǎo)分析可知,當(dāng)時(shí)有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個(gè)單位長(zhǎng)度定義域的值域的2倍,故此得到極大值點(diǎn)的通項(xiàng)公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時(shí),,顯然當(dāng)時(shí)有,,∴經(jīng)單調(diào)性分析知為的第一個(gè)極值點(diǎn)又∵時(shí),∴,,,…,均為其極值點(diǎn)∵函數(shù)不能在端點(diǎn)處取得極值∴,,∴對(duì)應(yīng)極值,,∴故選:C【點(diǎn)睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達(dá)式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對(duì)數(shù)列和函數(shù)的熟悉程度高,為中檔題5、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.7、C【解析】

將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點(diǎn)睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡(jiǎn)單題目.8、B【解析】

可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.9、A【解析】

可將問(wèn)題轉(zhuǎn)化,求直線關(guān)于直線的對(duì)稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點(diǎn),進(jìn)一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對(duì)稱直線為,當(dāng)時(shí),,,當(dāng)時(shí),,則當(dāng)時(shí),,單減,當(dāng)時(shí),,單增;當(dāng)時(shí),,,當(dāng),,當(dāng)時(shí),單減,當(dāng)時(shí),單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時(shí),得,解得;當(dāng)與()相切時(shí),滿足,解得,結(jié)合圖像可知,即,故選:A【點(diǎn)睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點(diǎn)問(wèn)題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題10、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模11、A【解析】

化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問(wèn)題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。12、D【解析】

利用交集的定義直接計(jì)算即可.【詳解】,故,故選:D.【點(diǎn)睛】本題考查集合的交運(yùn)算,注意常見集合的符號(hào)表示,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長(zhǎng)度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.14、【解析】

根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對(duì)稱軸及周期性,進(jìn)而由的解析式求得的值.【詳解】滿足,由函數(shù)對(duì)稱性可知關(guān)于對(duì)稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時(shí),所以,所以,故答案為:.【點(diǎn)睛】本題考查了函數(shù)奇偶性與對(duì)稱性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.15、【解析】

對(duì)函數(shù)求導(dǎo)后,代入切點(diǎn)的橫坐標(biāo)得到切線斜率,然后根據(jù)直線方程的點(diǎn)斜式,即可寫出切線方程.【詳解】因?yàn)?,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查過(guò)曲線上一點(diǎn)的切線方程的求法,屬基礎(chǔ)題.16、【解析】

設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)存在,.【解析】

(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時(shí),可求得,求得,②當(dāng)直線的斜率存在且不為0時(shí),設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時(shí),,此時(shí),②當(dāng)直線的斜率存在且不為0時(shí),設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【點(diǎn)睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長(zhǎng)公式的相關(guān)問(wèn)題,當(dāng)兩直線的斜率具有關(guān)系時(shí),可能通過(guò)斜率的代換得出另一條線段的弦長(zhǎng),屬于中檔題.18、(1),;(2).【解析】

(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,再根據(jù),即,利用韋達(dá)定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標(biāo)方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點(diǎn)睛】本題主要考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程的轉(zhuǎn)化和直線參數(shù)方程的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1);(2)【解析】

(1)先根據(jù)向量的數(shù)量積的運(yùn)算,以及二倍角公式和兩角和的正弦公式化簡(jiǎn)得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時(shí),,取最小值,所以,所求的取值集合是;(2)由,得,因?yàn)?,所以,所以?在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以的面積,因此的面積的最大值為.【點(diǎn)睛】本題考查了向量的數(shù)量積的運(yùn)算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20、(1);(2)證明見解析;(3)證明見解析.【解析】

(1)求得函數(shù)的導(dǎo)函數(shù),由此求得求當(dāng)日產(chǎn)量為噸時(shí)的邊際成本.(2)將所要證明不等式轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得不等式成立.(3)利用(2)的結(jié)論,判斷出,由此結(jié)合對(duì)數(shù)運(yùn)算,證得.【詳解】(1)因?yàn)樗援?dāng)時(shí),(2)要證,只需證,即證,設(shè)則所以在上單調(diào)遞減,所以所以,即;(3)因?yàn)橛钟桑?)知,當(dāng)時(shí),所以所以所以【點(diǎn)睛】本小題主要考查導(dǎo)數(shù)的計(jì)算,考查利用導(dǎo)數(shù)證明不等式,考查放縮法證明數(shù)列不等式,屬于難題.21、(1)當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)【解析】試題分析:(1),通過(guò)求導(dǎo)分析,得函數(shù)取得極小值為,無(wú)極大值;(2),所以,通過(guò)求導(dǎo)討論,得到的取值范圍是.試題解析:(1)函數(shù)的定義域?yàn)楫?dāng)時(shí),,所以所以當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以當(dāng)時(shí),函數(shù)取得極小值為,無(wú)極大值;(2)設(shè)函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線相同,則所以所以,代入得:設(shè),則不妨設(shè)則當(dāng)時(shí),,當(dāng)時(shí),所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,代入可得:設(shè),則對(duì)恒成立,所以在區(qū)間上單調(diào)遞增,又所以當(dāng)時(shí),即當(dāng)時(shí),又當(dāng)時(shí)因此當(dāng)時(shí),函數(shù)必有零點(diǎn);即當(dāng)時(shí),必存在使得成立;即存在使得函數(shù)上點(diǎn)與函數(shù)上點(diǎn)處切線相同.又由得:所以單調(diào)遞減,因此所以實(shí)數(shù)的取值范圍是.22、(1)(2){1,2}.【解析】

(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識(shí)求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論