2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高考仿真模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆湖南省長(zhǎng)沙市周南梅溪湖中學(xué)高考仿真模擬數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,2.已知拋物線y2=4x的焦點(diǎn)為F,拋物線上任意一點(diǎn)P,且PQ⊥y軸交y軸于點(diǎn)Q,則的最小值為()A. B. C.l D.13.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i4.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.5.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.36.中國(guó)鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國(guó)鐵路營(yíng)業(yè)里程達(dá)到13.1萬公里,其中高鐵營(yíng)業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營(yíng)里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營(yíng)里程增加最顯著B.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程與年價(jià)正相關(guān)C.2018年高鐵運(yùn)營(yíng)里程比2014年高鐵運(yùn)營(yíng)里程增長(zhǎng)80%以上D.從2014年到2018年這5年,高鐵運(yùn)營(yíng)里程數(shù)依次成等差數(shù)列7.將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.8.已知數(shù)列的通項(xiàng)公式是,則()A.0 B.55 C.66 D.789.過拋物線C:y2=4x的焦點(diǎn)F,且斜率為的直線交C于點(diǎn)M(M在x軸的上方),l為C的準(zhǔn)線,點(diǎn)N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.10.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.11.的展開式中的系數(shù)是-10,則實(shí)數(shù)()A.2 B.1 C.-1 D.-212.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種二、填空題:本題共4小題,每小題5分,共20分。13.實(shí)數(shù)滿足,則的最大值為_____.14.若的展開式中各項(xiàng)系數(shù)之和為32,則展開式中x的系數(shù)為_____15.若雙曲線的離心率為,則雙曲線的漸近線方程為______.16.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.18.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點(diǎn).(1)證明:;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)直線與直線所成的角最小時(shí),求三棱錐的體積.19.(12分)設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切.記動(dòng)圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),且直線與軸交于點(diǎn),設(shè),,求證:為定值.20.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.21.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.22.(10分)已知橢圓的短軸長(zhǎng)為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,過點(diǎn)作垂直于軸,垂足為,連接并延長(zhǎng)交于另一點(diǎn),交軸于點(diǎn).(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項(xiàng).【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點(diǎn)睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.2、A【解析】

設(shè)點(diǎn),則點(diǎn),,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點(diǎn),則點(diǎn),,,,當(dāng)時(shí),取最小值,最小值為.故選:A.【點(diǎn)睛】本題考查拋物線背景下的向量的坐標(biāo)運(yùn)算,考查學(xué)生的計(jì)算能力,是基礎(chǔ)題.3、B【解析】分析:化簡(jiǎn)已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡(jiǎn)可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.4、D【解析】

依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.5、A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.6、D【解析】

由折線圖逐項(xiàng)分析即可求解【詳解】選項(xiàng),顯然正確;對(duì)于,,選項(xiàng)正確;1.6,1.9,2.2,2.5,2.9不是等差數(shù)列,故錯(cuò).故選:D【點(diǎn)睛】本題考查統(tǒng)計(jì)的知識(shí),考查數(shù)據(jù)處理能力和應(yīng)用意識(shí),是基礎(chǔ)題7、C【解析】

根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)?,所以的最小值?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.8、D【解析】

先分為奇數(shù)和偶數(shù)兩種情況計(jì)算出的值,可進(jìn)一步得到數(shù)列的通項(xiàng)公式,然后代入轉(zhuǎn)化計(jì)算,再根據(jù)等差數(shù)列求和公式計(jì)算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),所以當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,所以故選:D【點(diǎn)睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.9、C【解析】

聯(lián)立方程解得M(3,),根據(jù)MN⊥l得|MN|=|MF|=4,得到△MNF是邊長(zhǎng)為4的等邊三角形,計(jì)算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長(zhǎng)為4的等邊三角形點(diǎn)M到直線NF的距離為故選:C.【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.10、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項(xiàng)

故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.11、C【解析】

利用通項(xiàng)公式找到的系數(shù),令其等于-10即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,則,所以,解得.故選:C【點(diǎn)睛】本題考查求二項(xiàng)展開式中特定項(xiàng)的系數(shù),考查學(xué)生的運(yùn)算求解能力,是一道容易題.12、B【解析】

把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

畫出可行域,解出可行域的頂點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標(biāo)函數(shù)最值.【詳解】解:作出可行域,如圖所示,則當(dāng)直線過點(diǎn)時(shí)直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃的線性目標(biāo)函數(shù)的最優(yōu)解問題.線性目標(biāo)函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點(diǎn)或邊界處取得,所以對(duì)于一般的線性規(guī)劃問題,若可行域是一個(gè)封閉的圖形,我們可以直接解出可行域的頂點(diǎn),然后將坐標(biāo)代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,從而確定目標(biāo)函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.14、2025【解析】

利用賦值法,結(jié)合展開式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項(xiàng)式的展開式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.15、【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16、【解析】

由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【點(diǎn)睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計(jì)算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對(duì)角互補(bǔ).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對(duì)值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí).綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,.所以,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以.所以,即.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用基本不等式證明不等式成立,涉及絕對(duì)值三角不等式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.18、(1)見解析;(2).【解析】

(1)要證明,只需證明平面即可;(2)以C為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立空間直角坐標(biāo)系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因?yàn)榈酌?,則②,由①②知平面,所以.(2)以C為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,,所以,,,設(shè),,則,所以,設(shè),則,所以當(dāng),即時(shí),取最大值,從而取最小值,即直線與直線所成的角最小,此時(shí),則,因?yàn)?,,則平面,從而M到平面的距離,所以.【點(diǎn)睛】本題考查線面垂直證線線垂直、異面直線直線所成角計(jì)算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計(jì)算量較大,解決此類問題最關(guān)鍵是準(zhǔn)確寫出點(diǎn)的坐標(biāo),是一道中檔題.19、(1);(2)見解析.【解析】

(1)已知點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,由此可得曲線的方程;(2)設(shè)直線方程為,,則,設(shè),由直線方程與拋物線方程聯(lián)立消元應(yīng)用韋達(dá)定理得,,由,,用橫坐標(biāo)表示出,然后計(jì)算,并代入,可得結(jié)論.【詳解】(1)設(shè)動(dòng)圓圓心,由拋物線定義知:點(diǎn)軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,設(shè)其方程為,則,解得.∴曲線的方程為;(2)證明:設(shè)直線方程為,,則,設(shè),由得,①,則,,②,由,,得,,整理得,,∴,代入②得:.【點(diǎn)睛】本題考查求曲線方程,考查拋物線的定義,考查直線與拋物線相交問題中的定值問題.解題方法是設(shè)而不求的思想方法,即設(shè)交點(diǎn)坐標(biāo),設(shè)直線方程,直線方程代入拋物線(或圓錐曲線)方程得一元二次方程,應(yīng)用韋達(dá)定理得,,代入題中其他條件所求式子中化簡(jiǎn)變形.20、(1)(2)【解析】

(1)利用分段討論法去掉絕對(duì)值,結(jié)合圖象,從而求得不等式的解集;(2)求出函數(shù)的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當(dāng)時(shí),則所以不等式的解集為.(2)等價(jià)于,而,故等價(jià)于,所以或,即或,所以實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查含有絕對(duì)值的不等式解法、不等式恒成立問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度一般.21、(1)①;②8079;(2).【解析】

(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對(duì)任意給定的,,在區(qū)間,上總存在兩個(gè)不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)?,,故,,①此時(shí),當(dāng)變化時(shí)、的變化情況如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論