版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省鄭口中學(xué)2024屆高三下學(xué)期第一次聯(lián)合考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.2.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關(guān)于原點O的對稱點為A,點P關(guān)于x軸的對稱點為Q,設(shè),直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.3.若復(fù)數(shù)z滿足,則()A. B. C. D.4.函數(shù)的圖象大致是()A. B.C. D.5.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.46.已知i為虛數(shù)單位,則()A. B. C. D.7.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,9.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.10.設(shè)為銳角,若,則的值為()A. B. C. D.11.圓心為且和軸相切的圓的方程是()A. B.C. D.12.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與的夾角為,||=||=1,且⊥(λ),則實數(shù)_____.14.已知邊長為的菱形中,,現(xiàn)沿對角線折起,使得二面角為,此時點,,,在同一個球面上,則該球的表面積為________.15.已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_______.16.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.18.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實數(shù)a的取值范圍.19.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.20.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.21.(12分)設(shè)函數(shù),,其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設(shè),證明:對任意,都有.22.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個極值點,,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【點睛】本題考查函數(shù)的零點,考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.2、C【解析】
設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.3、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學(xué)生對這些知識的理解掌握水平.4、A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.5、B【解析】
解出,分別代入選項中的值進(jìn)行驗證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.6、A【解析】
根據(jù)復(fù)數(shù)乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)運算,屬于基礎(chǔ)題題.7、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.8、B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.9、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關(guān)鍵.10、D【解析】
用誘導(dǎo)公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.11、A【解析】
求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.12、C【解析】
對于①中,根據(jù)指數(shù)冪的運算性質(zhì)和不等式的性質(zhì),可判定值正確的;對于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯誤的;對于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設(shè)函數(shù),則,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點睛】考查向量數(shù)量積的運算及計算公式,以及向量垂直的充要條件.14、【解析】
分別取,的中點,,連接,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計算可得;【詳解】如圖,分別取,的中點,,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點睛】本題考查多面體的外接球的計算,屬于中檔題.15、0.08【解析】
先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數(shù)據(jù)的方差,明確方差的計算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).16、【解析】
根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)16.【解析】
(1)將極坐標(biāo)方程化為直角坐標(biāo)方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標(biāo)方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標(biāo)方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時取等號即的面積最小值為16【點睛】本題主要考查了極坐標(biāo)方程化直角坐標(biāo)方程以及極坐標(biāo)的應(yīng)用,屬于中檔題.18、(1)當(dāng)時,無極值;當(dāng)時,極小值為;(2).【解析】
(1)求導(dǎo),對參數(shù)進(jìn)行分類討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時,,函數(shù)在上單調(diào)遞增,此時函數(shù)無極值;當(dāng)時,令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時函數(shù)有極小值,且極小值為.綜上:當(dāng)時,函數(shù)無極值;當(dāng)時,函數(shù)有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時,.故當(dāng),不成立.綜上所述:的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問題求參數(shù)范圍的問題,屬壓軸題.19、(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標(biāo)系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個法向量,計算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點為原點,直線分別為軸,建立空間直角坐標(biāo)系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設(shè)為平面PDE的一個法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設(shè)為平面PBE的一個法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計算,二面角大小的求解,考查了空間向量在立體幾何中的應(yīng)用,考查了學(xué)生的空間想象能力與運算求解能力.20、(1)證明見解析;(2)證明見解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結(jié),交于點,連結(jié),在矩形中,點為的中點,又,故,,又,平面,所以平面,又平面,所以平面平面.21、(1)(2)證明見解析【解析】
(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時,,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數(shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時,,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時,設(shè),則圖象的對稱軸,,,所以在上存在唯一實根,設(shè)為,則,,,所以在上單調(diào)遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:由題意得,因為當(dāng)時,,,所以.令,則,所以在上單調(diào)遞增,,即,所以,從而.由(1)知當(dāng)時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調(diào)遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的作用,利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性與求函數(shù)最值,利用導(dǎo)數(shù)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版江西省企業(yè)與員工勞動合同范本
- 2024-2030年中國大黃提取物市場規(guī)模分析及發(fā)展建議研究報告
- 2024年煤礦礦井水循環(huán)利用水池施工合同
- 眉山藥科職業(yè)學(xué)院《計算數(shù)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年物業(yè)管理保安勞務(wù)服務(wù)協(xié)議范本版B版
- 知識拓展 打破場景束縛:掌握景別組接藝術(shù)讓你的視頻更具沖擊力
- 2024全新二手車買賣合同帶車輛電子檔案及保養(yǎng)記錄下載3篇
- 2024年水利水電工程施工合同范本
- 2024年標(biāo)準(zhǔn)方便面長期供應(yīng)合作協(xié)議版B版
- 2024年度危險品應(yīng)急預(yù)案編制合同3篇
- 電梯維保人員安全培訓(xùn)課程
- 2024年四川省普通高中學(xué)業(yè)水平考試(思想政治樣題)
- 中儲糧西安公司社會招聘試題
- 《犬貓牙科學(xué)》課件
- 《ehr系統(tǒng)培訓(xùn)》課件
- 品質(zhì)部年終總結(jié)報告2022
- 庫爾勒香梨行業(yè)分析
- 易燃液體罐車裝卸作業(yè)操作規(guī)程模版
- 六年級上冊必讀書目《童年》閱讀測試題(附答案)
- 頭痛的鑒別診斷
- 機(jī)械工程測試技術(shù)課后習(xí)題
評論
0/150
提交評論