高等數(shù)學(經(jīng)濟類-下冊第2版)課件:可降階的高階微分方程_第1頁
高等數(shù)學(經(jīng)濟類-下冊第2版)課件:可降階的高階微分方程_第2頁
高等數(shù)學(經(jīng)濟類-下冊第2版)課件:可降階的高階微分方程_第3頁
高等數(shù)學(經(jīng)濟類-下冊第2版)課件:可降階的高階微分方程_第4頁
高等數(shù)學(經(jīng)濟類-下冊第2版)課件:可降階的高階微分方程_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

微分方程可降階的高階微分方程四、小結一、二、三、一、解法:特點:方程的右端函數(shù)僅包含自變量x;將方程的左端看作的導數(shù),兩邊積分;則可再繼續(xù)求n-1次積分,得原方程的通解.注:通解中任意常數(shù)的個數(shù)等于方程的階數(shù).解:對方程兩邊積分,得再對上式兩邊積分,得即為原方程的通解.注:本例中的n=2,積分兩次得到了方程的通解.例1通解中含有2個任意常數(shù),與方程階數(shù)相等.解對方程兩邊積分,有再對上式兩邊積分,得再積分,得原方程的通解例2于是所求的特解為方程階數(shù)是3,積分3次得到通解.根據(jù)三個初始條件,求通解中三個任意常數(shù).二、特點:解法:這是關于x,p的一階微分方程,設其通解為即所以原方程的通解為:右端不顯含未知函數(shù)y.解這是一個可分離變量的方程,分離變量得兩邊積分,則有例3于是再積分,得原方程的通解解這是關于p的一階非齊次線性微分方程,可改寫為根據(jù)一階非齊次線性微分方程的通解公式,有例4即解例4結合初始條件所以有對上式積分,得再結合初始條件因此,所求的特解為求此類方程特解時,如果積分得到一個任意常數(shù),應先利用初始條件,確定該常數(shù).三、特點:解法:這是關于y,q的一階微分方程,設其通解為即所以原方程的通解為:右端不顯含自變量x.解:例5求微分方程的通解.代入原方程,得于是有約分并分離變量,得兩邊積分,有所給的方程不顯含自變量x,則令即再分離變量再兩邊積分整理,得原方程的隱式通解約分并分離變量,得兩邊積分例6解:即結合初始條件代入上面的方程,有再分離變量例6解:再兩邊積分再結合初始條件因此,所求的特解為特解中不能含有任

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論