賀州學(xué)院《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
賀州學(xué)院《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
賀州學(xué)院《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)賀州學(xué)院

《試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理》2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,模型的過(guò)擬合和欠擬合是常見(jiàn)的問(wèn)題。假設(shè)要訓(xùn)練一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,以下關(guān)于防止過(guò)擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過(guò)擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化2、在數(shù)據(jù)分析中,如果數(shù)據(jù)存在偏差,可能會(huì)導(dǎo)致分析結(jié)果不準(zhǔn)確。以下哪種情況可能導(dǎo)致數(shù)據(jù)偏差?()A.抽樣方法不合理B.數(shù)據(jù)錄入錯(cuò)誤C.樣本量過(guò)小D.以上都是3、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),發(fā)現(xiàn)某個(gè)月的銷售額異常高。在進(jìn)一步分析時(shí),首先應(yīng)該考慮的因素是?()A.促銷活動(dòng)B.數(shù)據(jù)錄入錯(cuò)誤C.市場(chǎng)需求突然增加D.競(jìng)爭(zhēng)對(duì)手表現(xiàn)不佳4、在進(jìn)行數(shù)據(jù)可視化時(shí),若要同時(shí)展示多個(gè)變量之間的關(guān)系,以下哪種圖表較為合適?()A.散點(diǎn)圖矩陣B.雷達(dá)圖C.熱力圖D.樹(shù)狀圖5、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個(gè)環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動(dòng)化工具和算法,也可以手動(dòng)進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開(kāi)始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的算法和模型需要考慮數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)我們有一個(gè)不平衡的數(shù)據(jù)集,其中一個(gè)類別占比極少,以下哪種方法可以處理這種不平衡問(wèn)題?()A.過(guò)采樣B.欠采樣C.調(diào)整分類閾值D.以上都是7、假設(shè)要分析某產(chǎn)品在不同地區(qū)的銷售情況,同時(shí)考慮地區(qū)的經(jīng)濟(jì)發(fā)展水平和人口密度等因素,以下哪種分析方法較為合適?()A.方差分析B.多元回歸分析C.因子分析D.對(duì)應(yīng)分析8、在數(shù)據(jù)挖掘中,若要預(yù)測(cè)客戶的購(gòu)買行為,以下哪種方法可能會(huì)被采用?()A.分類算法B.回歸算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都有可能9、在數(shù)據(jù)分析中,建立回歸模型用于預(yù)測(cè)是常見(jiàn)的任務(wù)。假設(shè)我們要根據(jù)房屋的面積、位置和房齡等因素來(lái)預(yù)測(cè)房?jī)r(jià),以下哪種回歸模型可能在這種情況下表現(xiàn)較好?()A.線性回歸B.邏輯回歸C.多項(xiàng)式回歸D.嶺回歸10、在數(shù)據(jù)可視化中,顏色的選擇和使用對(duì)于傳達(dá)信息有重要影響。假設(shè)要在一個(gè)圖表中突出顯示關(guān)鍵數(shù)據(jù),以下哪種顏色搭配策略可能是最有效的?()A.使用鮮艷的對(duì)比色B.使用相近的柔和色C.隨機(jī)選擇顏色D.只使用一種顏色11、數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)需要考慮多方面因素。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)架構(gòu)設(shè)計(jì)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)包括數(shù)據(jù)源、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理和數(shù)據(jù)訪問(wèn)等部分B.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)應(yīng)考慮數(shù)據(jù)的規(guī)模、增長(zhǎng)速度和使用頻率等因素C.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)可以采用分層架構(gòu),將數(shù)據(jù)分為不同的層次進(jìn)行管理D.數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)設(shè)計(jì)一旦確定就不能再進(jìn)行調(diào)整和優(yōu)化,否則會(huì)影響系統(tǒng)的穩(wěn)定性12、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要根據(jù)不同的目的選擇合適的抽樣方法。假設(shè)要對(duì)一個(gè)大型電商平臺(tái)的用戶購(gòu)買行為數(shù)據(jù)進(jìn)行抽樣,以估計(jì)總體的平均消費(fèi)金額,同時(shí)希望抽樣結(jié)果具有較好的代表性。以下哪種抽樣方法可能是最合適的?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.系統(tǒng)抽樣D.整群抽樣13、對(duì)于一個(gè)包含大量重復(fù)數(shù)據(jù)的數(shù)據(jù)表,以下哪種操作可以有效地減少數(shù)據(jù)存儲(chǔ)空間?()A.建立索引B.數(shù)據(jù)壓縮C.數(shù)據(jù)分區(qū)D.數(shù)據(jù)清理14、在數(shù)據(jù)挖掘的關(guān)聯(lián)規(guī)則挖掘中,以下哪個(gè)指標(biāo)用于衡量規(guī)則的有效性和實(shí)用性?()A.支持度B.置信度C.提升度D.以上都是15、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在數(shù)據(jù)分析中,如何評(píng)估數(shù)據(jù)的分布特征?請(qǐng)介紹描述數(shù)據(jù)分布的統(tǒng)計(jì)量和圖表,如直方圖、箱線圖等,并舉例說(shuō)明。2、(本題5分)描述數(shù)據(jù)可視化中的地圖可視化技術(shù),如choropleth地圖、heatmap地圖等的特點(diǎn)和適用場(chǎng)景,并舉例說(shuō)明在地理數(shù)據(jù)分析中的應(yīng)用。3、(本題5分)在數(shù)據(jù)倉(cāng)庫(kù)中,如何進(jìn)行數(shù)據(jù)存儲(chǔ)的優(yōu)化以提高查詢性能?請(qǐng)說(shuō)明存儲(chǔ)格式選擇、分區(qū)策略等方面的優(yōu)化方法,并舉例說(shuō)明。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在金融市場(chǎng)的量化投資中,數(shù)據(jù)分析和算法交易發(fā)揮著重要作用。以某量化投資基金為例,討論如何利用數(shù)據(jù)分析來(lái)構(gòu)建投資策略、篩選股票、控制風(fēng)險(xiǎn),以及如何應(yīng)對(duì)市場(chǎng)的突發(fā)事件和模型失效的風(fēng)險(xiǎn)。2、(本題5分)在農(nóng)業(yè)領(lǐng)域,土壤監(jiān)測(cè)數(shù)據(jù)、氣象數(shù)據(jù)和農(nóng)作物生長(zhǎng)數(shù)據(jù)等日益增多。分析如何利用數(shù)據(jù)分析手段,如精準(zhǔn)農(nóng)業(yè)決策支持、農(nóng)作物病蟲(chóng)害預(yù)測(cè)等,實(shí)現(xiàn)農(nóng)業(yè)生產(chǎn)的精細(xì)化管理、提高農(nóng)作物產(chǎn)量和質(zhì)量,同時(shí)探討在數(shù)據(jù)標(biāo)準(zhǔn)化、農(nóng)業(yè)專業(yè)知識(shí)結(jié)合和農(nóng)村地區(qū)數(shù)據(jù)基礎(chǔ)設(shè)施方面可能面臨的問(wèn)題及應(yīng)對(duì)方法。3、(本題5分)對(duì)于企業(yè)的大數(shù)據(jù)平臺(tái)架構(gòu)選型,論述如何根據(jù)業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)選擇合適的大數(shù)據(jù)技術(shù)架構(gòu)和工具。4、(本題5分)隨著智能交通系統(tǒng)的發(fā)展,交通流量數(shù)據(jù)、路況數(shù)據(jù)等大量涌現(xiàn)。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如智能信號(hào)燈控制優(yōu)化、擁堵路段預(yù)測(cè)等,改善城市交通狀況,同時(shí)分析在數(shù)據(jù)融合難度大、實(shí)時(shí)處理要求高和交通模型準(zhǔn)確性方面的挑戰(zhàn)及解決辦法。5、(本題5分)在物流倉(cāng)儲(chǔ)管理中,數(shù)據(jù)分析可以優(yōu)化倉(cāng)庫(kù)布局和庫(kù)存管理。以某大型物流倉(cāng)庫(kù)為例,闡述如何通過(guò)數(shù)據(jù)分析來(lái)確定貨物存儲(chǔ)位置、預(yù)測(cè)庫(kù)存需求、降低庫(kù)存成本,以及如何應(yīng)對(duì)快速變化的市場(chǎng)需求和物流配送要求。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某運(yùn)動(dòng)裝備品牌公司積累了產(chǎn)品銷售數(shù)據(jù)、市場(chǎng)競(jìng)爭(zhēng)情況、消費(fèi)者評(píng)價(jià)等。分析品牌的市場(chǎng)定位和競(jìng)爭(zhēng)優(yōu)勢(shì),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論