版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
西北狼聯(lián)盟2025屆高考仿真卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.設(shè)為非零實數(shù),且,則()A. B. C. D.3.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.4.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格5.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)6.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.7.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.8.如下的程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.159.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a10.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.511.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.7812.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐P-ABC中,,,,三個側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.14.如圖是一個算法流程圖,若輸出的實數(shù)的值為,則輸入的實數(shù)的值為______________.15.已知數(shù)列滿足對任意,若,則數(shù)列的通項公式________.16.在棱長為6的正方體中,是的中點,點是面,所在平面內(nèi)的動點,且滿足,則三棱錐的體積的最大值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.18.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.19.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.20.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.21.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.22.(10分)已知函數(shù).(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
討論當時,是否恒成立;討論當恒成立時,是否成立,即可選出正確答案.【詳解】解:當時,,由開口向上,則恒成立;當恒成立時,若,則不恒成立,不符合題意,若時,要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個命題的關(guān)系時,一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.2、C【解析】
取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運用.3、B【解析】
解:當直線過點時,最大,故選B4、D【解析】
先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.5、C【解析】
由奇函數(shù)的性質(zhì)可得,進而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因為是定義在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.6、C【解析】
由題意可知,,由可得出,,利用導(dǎo)數(shù)可得出函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,進而可得出,由此可得出,可得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調(diào)遞增,同理可知,函數(shù)在區(qū)間上單調(diào)遞增,,則,,則,構(gòu)造函數(shù),其中,則.當時,,此時函數(shù)單調(diào)遞增;當時,,此時函數(shù)單調(diào)遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構(gòu)思想的應(yīng)用,考查化歸與轉(zhuǎn)化思想的應(yīng)用,有一定的難度.7、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.8、A【解析】
根據(jù)題意可知最后計算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結(jié)果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術(shù)求兩個數(shù)的最大公約數(shù),難度較易.9、A【解析】
令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點睛】解決函數(shù)零點問題,常常利用數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學(xué)思想.10、A【解析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結(jié)果.【詳解】解:設(shè),,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結(jié)合距離公式求解,屬于難題.11、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉(zhuǎn)化計算,再根據(jù)等差數(shù)列求和公式計算出結(jié)果.【詳解】解:由題意得,當為奇數(shù)時,,當為偶數(shù)時,所以當為奇數(shù)時,;當為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.12、B【解析】
利用復(fù)數(shù)的四則運算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復(fù)數(shù)的四則運算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.14、【解析】
根據(jù)程序框圖得到程序功能,結(jié)合分段函數(shù)進行計算即可.【詳解】解:程序的功能是計算,若輸出的實數(shù)的值為,則當時,由得,當時,由,此時無解.故答案為:.【點睛】本題主要考查程序框圖的識別和判斷,理解程序功能是解決本題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
由可得,利用等比數(shù)列的通項公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【詳解】由,得,數(shù)列是等比數(shù)列,首項為2,公比為2,,,,,滿足上式,.故答案為:.【點睛】本題考查數(shù)列的通項公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關(guān)鍵,利用累加法求通項公式,屬于中檔題.16、【解析】
根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內(nèi)的動點,且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),理由見解析.【解析】
(1)求出橢圓的上、下焦點坐標,利用橢圓的定義求得的值,進而可求得的值,由此可得出橢圓的方程;(2)設(shè)點的坐標為,求出直線的方程,求出點的坐標,由此計算出直線和的斜率,可計算出的值,進而可求得的值,即可得出結(jié)論.【詳解】(1)由題意可知,橢圓的上焦點為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設(shè)點的坐標為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點,直線的斜率為,直線的斜率為,所以,,,因此,.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中定值問題的求解,考查計算能力,屬于中等題.18、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對求導(dǎo),確定函數(shù)單調(diào)性,得到函數(shù)極值.(2)構(gòu)造函數(shù),證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調(diào)遞減,在上單調(diào)遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數(shù)的單調(diào)性,極值,不等式的證明,構(gòu)造函數(shù)是解題的關(guān)鍵.19、(1)證明見解析;(2)1【解析】
(1)由菱形的性質(zhì)和線面垂直的性質(zhì),可得平面,再由面面垂直的判定定理,即可得證;(2)設(shè),分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設(shè),在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉(zhuǎn)化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學(xué)生對這些知識的理解掌握水平.20、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.21、(1)①當時,在單調(diào)遞增,②當時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】
(1)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當時,恒成立,則在單調(diào)遞增②當時,令得,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 支付結(jié)算課程設(shè)計
- 人工智能技術(shù)發(fā)展趨勢與前景展望分析報告
- 幼兒園個別化課程設(shè)計
- 2024年珠寶行業(yè)保值回購合同3篇
- 家用空調(diào)課程設(shè)計
- 企業(yè)品牌營銷的策略與實踐
- 商品銷售統(tǒng)計c 課程設(shè)計
- 大班春游課程設(shè)計
- 2024年某餐飲公司關(guān)于連鎖餐廳管理與運營合同
- 在線電阻測量課程設(shè)計
- 企業(yè)戰(zhàn)略規(guī)劃顧問協(xié)議
- 新版浙教版2024-2025學(xué)年度八年級數(shù)學(xué)上冊幾何復(fù)習(xí)專題卷含答案
- 《現(xiàn)代控制理論》全套課件(東北大學(xué))
- 人教版八年級上冊數(shù)學(xué)期末考試試卷附答案
- 2024年部編版語文六年級上冊期末測試題及答案(一)
- 2024年航空職業(yè)技能鑒定考試-航空票務(wù)知識考試近5年真題集錦(頻考類試題)帶答案
- 長護險定點機構(gòu)自查報告
- 2025年廣東省春季高考英語語法填空專項復(fù)習(xí)試題二(含答案解析)
- 智能無人機銷售合同
- 《微服務(wù)體系架構(gòu)》教學(xué)大綱
- 中國鐵路南昌局集團有限公司招聘筆試題庫2024
評論
0/150
提交評論