版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省于都縣2025屆高考臨考沖刺數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線:的一條漸近線方程為,則()A. B. C. D.2.已知命題,且是的必要不充分條件,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.四人并排坐在連號(hào)的四個(gè)座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.84.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.35.已知雙曲線C:()的左、右焦點(diǎn)分別為,過(guò)的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.6.設(shè)函數(shù),若函數(shù)有三個(gè)零點(diǎn),則()A.12 B.11 C.6 D.37.將函數(shù)的圖象分別向右平移個(gè)單位長(zhǎng)度與向左平移(>0)個(gè)單位長(zhǎng)度,若所得到的兩個(gè)圖象重合,則的最小值為()A. B. C. D.8.已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.9.在中,為中點(diǎn),且,若,則()A. B. C. D.10.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.311.如圖,拋物線:的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),若直線與以為圓心,線段(為坐標(biāo)原點(diǎn))長(zhǎng)為半徑的圓交于,兩點(diǎn),則關(guān)于值的說(shuō)法正確的是()A.等于4 B.大于4 C.小于4 D.不確定12.根據(jù)黨中央關(guān)于“精準(zhǔn)”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟(jì)部門派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點(diǎn),雙曲線的漸近線上存在點(diǎn)滿足,則的最大值為_(kāi)_______.14.已知內(nèi)角,,的對(duì)邊分別為,,.,,則_________.15.設(shè)全集,,,則______.16.已知一個(gè)正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.18.(12分)某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.據(jù)統(tǒng)計(jì),該公司每年為這一萬(wàn)名參保人員支出的各種費(fèi)用為一百萬(wàn)元.年齡(單位:歲)保費(fèi)(單位:元)(1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購(gòu)買該項(xiàng)保險(xiǎn)(取中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒(méi)有購(gòu)買該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購(gòu)買此項(xiàng)保險(xiǎn)是否劃算?19.(12分)在角中,角A、B、C的對(duì)邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長(zhǎng).20.(12分)已知函數(shù)(),且只有一個(gè)零點(diǎn).(1)求實(shí)數(shù)a的值;(2)若,且,證明:.21.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長(zhǎng).22.(10分)已知橢圓,直線不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過(guò)點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.2、D【解析】
求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實(shí)數(shù)的取值范圍為.故選:.【點(diǎn)睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問(wèn)題一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關(guān)系,然后根據(jù)集合之間關(guān)系列出關(guān)于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時(shí),一定要注意區(qū)間端點(diǎn)值的檢驗(yàn).3、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個(gè)空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個(gè)空位置里進(jìn)行插空,有種,所以共有種.故選:A【點(diǎn)睛】本題考查排列中不相鄰問(wèn)題,常用插空法,屬于基礎(chǔ)題.4、A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.5、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.6、B【解析】
畫出函數(shù)的圖象,利用函數(shù)的圖象判斷函數(shù)的零點(diǎn)個(gè)數(shù),然后轉(zhuǎn)化求解,即可得出結(jié)果.【詳解】作出函數(shù)的圖象如圖所示,令,由圖可得關(guān)于的方程的解有兩個(gè)或三個(gè)(時(shí)有三個(gè),時(shí)有兩個(gè)),所以關(guān)于的方程只能有一個(gè)根(若有兩個(gè)根,則關(guān)于的方程有四個(gè)或五個(gè)根),由,可得的值分別為,則故選B.【點(diǎn)睛】本題考查數(shù)形結(jié)合以及函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于??碱}型.7、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個(gè)單位長(zhǎng)度后,所得的兩個(gè)圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時(shí),最小值為,故選B.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡(jiǎn)單題目.8、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.9、B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.10、B【解析】
根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問(wèn)題的基本思路,屬于中檔題.11、A【解析】
利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時(shí),;當(dāng)時(shí),據(jù),得,所以,所以.【點(diǎn)睛】本題考查直線與拋物線的相交問(wèn)題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題12、A【解析】
每個(gè)縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對(duì)三個(gè)縣區(qū)進(jìn)行調(diào)研,每個(gè)縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個(gè)數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項(xiàng):【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),由可得,整理得,即點(diǎn)在以為圓心,為半徑的圓上.又點(diǎn)到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時(shí),取得最大值,此時(shí),解得.14、【解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.【點(diǎn)睛】本題考查了正弦定理求角,三角恒等變換,屬于基礎(chǔ)題.15、【解析】
先求出集合,,然后根據(jù)交集、補(bǔ)集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.【點(diǎn)睛】本題主要考查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.16、【解析】
如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),,,,,,.故答案為:.【點(diǎn)睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)詳見(jiàn)解析;(2).【解析】
(1)由直徑所對(duì)的圓周角為,可知,通過(guò)計(jì)算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點(diǎn),分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量和平面的法向量,利用空間向量數(shù)量積運(yùn)算公式,可以求出二面角的余弦值.【詳解】解:(1)證明:因?yàn)榘雸A弧上的一點(diǎn),所以.在中,分別為的中點(diǎn),所以,且.于是在中,,所以為直角三角形,且.因?yàn)椋?所以.因?yàn)?,,,所以平?又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點(diǎn),分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【點(diǎn)睛】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問(wèn)題.18、(1)30;(2),比較劃算.【解析】
(1)由頻率和為1求出,根據(jù)的值求出保費(fèi)的平均值,然后解一元一次不等式即可求出結(jié)果,最后取近似值即可;(2)分別計(jì)算參保與不參保時(shí)的期望,,比較大小即可.【詳解】解:(1)由,解得.保險(xiǎn)公司每年收取的保費(fèi)為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購(gòu)買了此項(xiàng)保險(xiǎn),則的取值為∴(元).②若該老人沒(méi)有購(gòu)買此項(xiàng)保險(xiǎn),則的取值為.∴(元).∴年齡為的該老人購(gòu)買此項(xiàng)保險(xiǎn)比較劃算.【點(diǎn)睛】本題考查學(xué)生利用相關(guān)統(tǒng)計(jì)圖表知識(shí)處理實(shí)際問(wèn)題的能力,掌握頻率分布直方圖的基本性質(zhì),知道數(shù)學(xué)期望是平均數(shù)的另一種數(shù)學(xué)語(yǔ)言,為容易題.19、(1);(2)1.【解析】
(1)由正弦定理化簡(jiǎn)已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長(zhǎng)的值.【詳解】(1)由題意,在中,因?yàn)?,由正弦定理,可得sinAsinB=sinBcosA,又因?yàn)?,可得sinB≠0,所以sinA=cosA,即:tanA=,因?yàn)锳∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長(zhǎng)a+b+c=5+7=1.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(1)(2)證明見(jiàn)解析【解析】
(1)求導(dǎo)可得在上,在上,所以函數(shù)在時(shí),取最小值,由函數(shù)只有一個(gè)零點(diǎn),觀察可知?jiǎng)t有,即可求得結(jié)果.(2)由(1)可知為最小值,則構(gòu)造函數(shù)(),求導(dǎo)借助基本不等式可判斷為減函數(shù),即可得,即則有,由已知可得,由,可知,因?yàn)闀r(shí),為增函數(shù),即可得證得結(jié)論.【詳解】(1)().因?yàn)?,所以,令得,,且,,在上;在上;所以函?shù)在時(shí),取最小值,當(dāng)最小值為0時(shí),函數(shù)只有一個(gè)零點(diǎn),易得,所以,解得.(2)由(1)得,函數(shù),設(shè)(),則,設(shè)(),則,,所以為減函數(shù),所以,即,所以,即,又,所以,又當(dāng)時(shí),為增函數(shù),所以,即.【點(diǎn)睛】本題考查借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,考查學(xué)生分析問(wèn)題的能力,及邏輯推理能力,難度困難.21、(1)(2)3+3【解析】
(1)利用余弦的二倍角公式和同角三角函數(shù)關(guān)系式化簡(jiǎn)整理并結(jié)合范圍0<A<π,可求A的值.(2)由正弦定理可求a,利用余弦定理可得c值,即可求周長(zhǎng).【詳解】(1),即又(2),∵,∴由余弦定理得a2=b2+c2﹣2bccosA,∴,∵c>0,所以得c=2,∴周長(zhǎng)a+b+c
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度PVC環(huán)保涂料研發(fā)與生產(chǎn)合同3篇
- 2025年度美發(fā)行業(yè)創(chuàng)新技術(shù)研發(fā)與應(yīng)用合同4篇
- 二零二五版環(huán)保節(jié)能零配件研發(fā)與應(yīng)用合同4篇
- 二零二五年酒店健身房承包經(jīng)營(yíng)及設(shè)備維護(hù)合同3篇
- 二零二四廈門抗浮錨桿維修保養(yǎng)與定期檢查合同3篇
- 2025年度門禁系統(tǒng)與訪客預(yù)約系統(tǒng)對(duì)接合同4篇
- 2025年場(chǎng)項(xiàng)目投標(biāo)失敗后的合同履行監(jiān)督與違約責(zé)任合同4篇
- 二零二五版高性能門窗材料供應(yīng)與加工合同4篇
- 2025年度苗木種植項(xiàng)目招投標(biāo)合同4篇
- 2025年度廢油品回收處理承包合同樣本4篇
- 2025年溫州市城發(fā)集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 2025版高考物理復(fù)習(xí)知識(shí)清單
- 2024年度工作總結(jié)與計(jì)劃標(biāo)準(zhǔn)版本(2篇)
- 全球半導(dǎo)體測(cè)試探針行業(yè)市場(chǎng)研究報(bào)告2024
- 2024年注冊(cè)計(jì)量師-一級(jí)注冊(cè)計(jì)量師考試近5年真題附答案
- 2023-2024學(xué)年深圳市高一年級(jí)下冊(cè)英語(yǔ)期末考試題(含答案)
- 工程管理重大風(fēng)險(xiǎn)應(yīng)對(duì)方案
- 直播帶貨助農(nóng)現(xiàn)狀及發(fā)展對(duì)策研究-以抖音直播為例(開(kāi)題)
- 《光伏發(fā)電工程工程量清單計(jì)價(jià)規(guī)范》
- (完整版)保證藥品信息來(lái)源合法、真實(shí)、安全的管理措施、情況說(shuō)明及相關(guān)證明
- 營(yíng)銷專員績(jī)效考核指標(biāo)
評(píng)論
0/150
提交評(píng)論