版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇睢寧市高三最后一模數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.2.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計(jì)下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加3.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.4.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.5.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.06.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.7.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件8.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.49.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.10.如圖,在中,點(diǎn)是的中點(diǎn),過點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.311.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.212.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對(duì)邊分別為,且.若為鈍角,,則的面積為____________.14.若展開式中的常數(shù)項(xiàng)為240,則實(shí)數(shù)的值為________.15.已知點(diǎn)是橢圓上一點(diǎn),過點(diǎn)的一條直線與圓相交于兩點(diǎn),若存在點(diǎn),使得,則橢圓的離心率取值范圍為_________.16.直線xsinα+y+2=0的傾斜角的取值范圍是________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若點(diǎn)是直線的一點(diǎn),過點(diǎn)作曲線的切線,切點(diǎn)為,求的最小值.18.(12分)在平面直角坐標(biāo)系中,設(shè),過點(diǎn)的直線與圓相切,且與拋物線相交于兩點(diǎn).(1)當(dāng)在區(qū)間上變動(dòng)時(shí),求中點(diǎn)的軌跡;(2)設(shè)拋物線焦點(diǎn)為,求的周長(zhǎng)(用表示),并寫出時(shí)該周長(zhǎng)的具體取值.19.(12分)已知離心率為的橢圓經(jīng)過點(diǎn).(1)求橢圓的方程;(2)薦橢圓的右焦點(diǎn)為,過點(diǎn)的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請(qǐng)問的面積是否為定值?若是,求出此定值;若不是,請(qǐng)說明理由.20.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點(diǎn),且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.21.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.22.(10分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.2、C【解析】
根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項(xiàng)的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項(xiàng)錯(cuò)誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計(jì)下來產(chǎn)量最多的是口罩,C選項(xiàng)正確.故選:C.【點(diǎn)睛】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、A【解析】
聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)椋詀2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點(diǎn)睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、常考題型.4、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時(shí),取得等號(hào).故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識(shí),是一道容易題.5、B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩(shī)A角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.6、A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.7、A【解析】
,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了線面和面面垂直的判定與性質(zhì)定理、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力.8、D【解析】
如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.9、D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對(duì)函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.10、C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.11、B【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.12、A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐?,所以,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因?yàn)?,所以.又因?yàn)?,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、-3【解析】
依題意可得二項(xiàng)式展開式的常數(shù)項(xiàng)為即可得到方程,解得即可;【詳解】解:∵二項(xiàng)式的展開式中的常數(shù)項(xiàng)為,∴解得.故答案為:【點(diǎn)睛】本題考查二項(xiàng)式展開式中常數(shù)項(xiàng)的計(jì)算,屬于基礎(chǔ)題.15、【解析】
設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡(jiǎn)得:,,,,存在點(diǎn),使得,,即,,,,故答案為:【點(diǎn)睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運(yùn)用,考查直線參數(shù)方程的運(yùn)用,屬于中檔題.16、【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)見解析【解析】
(1)消去t,得直線的普通方程,利用極坐標(biāo)與普通方程互化公式得曲線的直角坐標(biāo)方程;(2)判斷與圓相離,連接,在中,,即可求解【詳解】(1)將的參數(shù)方程(為參數(shù))消去參數(shù),得.因?yàn)?,,所以曲線的直角坐標(biāo)方程為.(2)由(1)知曲線是以為圓心,3為半徑的圓,設(shè)圓心為,則圓心到直線的距離,所以與圓相離,且.連接,在中,,所以,,即的最小值為.【點(diǎn)睛】本題考查參數(shù)方程化普通方程,極坐標(biāo)與普通方程互化,直線與圓的位置關(guān)系,是中檔題18、(1).(2)的周長(zhǎng)為,時(shí),的周長(zhǎng)為【解析】
(1)設(shè)的方程為,根據(jù)題意由點(diǎn)到直線的距離公式可得,將直線方程與拋物線方程聯(lián)立可得,設(shè)?坐標(biāo)分別是?,利用韋達(dá)定理以及中點(diǎn)坐標(biāo)公式消參即可求解.(2)根據(jù)拋物線的定義可得,由(1)可得,再利用弦長(zhǎng)公式即可求解.【詳解】(1)設(shè)的方程為于是聯(lián)立設(shè)?坐標(biāo)分別是?則設(shè)的中點(diǎn)坐標(biāo)為,則消去參數(shù)得:(2)設(shè),,由拋物線定義知,,∴由(1)知∴,,的周長(zhǎng)為時(shí),的周長(zhǎng)為【點(diǎn)睛】本題考查了動(dòng)點(diǎn)的軌跡方程、直線與拋物線的位置關(guān)系、拋物線的定義、弦長(zhǎng)公式,考查了計(jì)算能力,屬于中檔題.19、(1);(2)是,【解析】
(1)根據(jù)及可得,再將點(diǎn)代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;(2)可設(shè)所在直線的方程為,,,,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關(guān)系求出,然后將直線、、的斜率、、分別用表示,利用可求出,從而可確定點(diǎn)恒在一條直線上,結(jié)合圖形即可求出的面積.【詳解】(1)因?yàn)闄E圓的離心率為,所以,即,又,所以,①因?yàn)辄c(diǎn)在橢圓上,所以,②由①②解得,所以橢圓C的方程為.(1)可知,,可設(shè)所在直線的方程為,由,得,設(shè),,,則,,設(shè)直線、、的斜率分別為、、,因?yàn)槿c(diǎn)共線,所以,即,所以,又,因?yàn)橹本€、、的斜率成等差數(shù)列,所以,即,化簡(jiǎn)得,即點(diǎn)恒在一條直線上,又因?yàn)橹本€方程為,且,所以是定值.【點(diǎn)睛】本題主要考查橢圓的方程,直線與橢圓的位置關(guān)系及橢圓中的定值問題,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】
(I)取的中點(diǎn),連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【詳解】(Ⅰ)取的中點(diǎn),連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點(diǎn),所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點(diǎn),即面,.【點(diǎn)睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.21、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)式可求得,結(jié)合正弦和角公式求得,即可求得,進(jìn)而由三角函數(shù)(2)設(shè)根據(jù)余弦定理及基本不等式,可求得的最大值,結(jié)合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數(shù)關(guān)系式可得,則,則,所以.(2)設(shè)在中由余弦定理可得,代入可得,由基本不等式可知,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),由三角形面積公式可得,所以四邊形面積的最大值為.【點(diǎn)睛】本題考查了正弦和角公式化簡(jiǎn)三角函數(shù)式的應(yīng)用,余弦定理及不等式式求最值的綜合應(yīng)用,屬于中檔題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 沉香和種合同范例
- 輪胎承包服務(wù)合同范例
- 補(bǔ)簽采購(gòu)合同范例
- 大棚拆棚合同范例
- 2024至2030年水栓項(xiàng)目投資價(jià)值分析報(bào)告
- 2024至2030年惡喹酸鈉項(xiàng)目投資價(jià)值分析報(bào)告
- 全部股權(quán)并購(gòu)合同范例
- 征地拆遷補(bǔ)償協(xié)議合同范例
- 2024年摩托車電噴裝置項(xiàng)目可行性研究報(bào)告
- 翻修房屋施工合同范例
- 混合云架構(gòu)整體設(shè)計(jì)及應(yīng)用場(chǎng)景介紹
- 《盤點(diǎn)程序說明會(huì)》課件
- 期末素養(yǎng)綜合測(cè)評(píng)卷(二)2024-2025學(xué)年魯教版(五四制)六年級(jí)數(shù)學(xué)上冊(cè)(解析版)
- 考核19(西餐)試題
- 2024安全生產(chǎn)法解讀
- 吉林省長(zhǎng)春市(2024年-2025年小學(xué)五年級(jí)語文)人教版期末考試(上學(xué)期)試卷及答案
- 環(huán)保創(chuàng)業(yè)孵化器服務(wù)行業(yè)營(yíng)銷策略方案
- 研究生年終總結(jié)和展望
- 浙江省杭州市2023-2024學(xué)年高二上學(xué)期1月期末地理試題 含解析
- 無人機(jī)應(yīng)用與基礎(chǔ)操控入門課件
- 國(guó)開(貴州)2024年秋《地域文化(專)》形考任務(wù)1-2答案
評(píng)論
0/150
提交評(píng)論