2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷_第1頁(yè)
2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷_第2頁(yè)
2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷_第3頁(yè)
2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷_第4頁(yè)
2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第1頁(yè)(共1頁(yè))2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷一、選擇題:(本大題共10個(gè)小題,每小題3分,共30分)在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題意.21?世紀(jì)*教育網(wǎng)1.(3分)﹣6的絕對(duì)值是()A.6 B.﹣6 C. D.2.(3分)如圖是一個(gè)圓臺(tái),它的主視圖是()A. B. C. D.3.(3分)下列運(yùn)算結(jié)果為a6的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.(﹣a2)3 D.a(chǎn)8÷a24.(3分)一組數(shù)據(jù)3、5、8、3、4的眾數(shù)與中位數(shù)分別是()A.3,8 B.3,3 C.3,4 D.4,35.(3分)如圖,已知AB∥CD,∠C=70°,∠F=30°,則∠A的度數(shù)為()A.30° B.35° C.40° D.45°6.(3分)如圖,已知數(shù)軸上的點(diǎn)A、B、C、D分別表示數(shù)﹣2、1、2、3,則表示數(shù)3﹣的點(diǎn)P應(yīng)落在線段()A.AO上 B.OB上 C.BC上 D.CD上7.(3分)若順次連接四邊形ABCD四邊的中點(diǎn),得到的圖形是一個(gè)矩形,則四邊形ABCD一定是()A.矩形 B.菱形 C.對(duì)角線相等的四邊形 D.對(duì)角線互相垂直的四邊形8.(3分)如圖,AD、BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā),沿O→C→D→O的路線勻速運(yùn)動(dòng).設(shè)∠APB=y(單位:度),那么y關(guān)于點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)圖象大致是()A. B. C. D.9.(3分)如圖,透明的圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離容器底部3cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁,且離容器上沿3cm的點(diǎn)A處,則螞蟻吃到飯粒需爬行的最短路徑是()A.13cm B.2cm C.cm D.2cm10.(3分)如圖,在△ABC中,∠ACB=90°,AC=BC=1,E、F為線段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過(guò)點(diǎn)E、F分別作BC、AC的垂線相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;③AF+BE=EF;④MG?MH=,其中正確結(jié)論為()A.①②③ B.①③④ C.①②④ D.①②③④二、填空題:(本大題共6個(gè)小題,每小題3分,共18分)11.(3分)太陽(yáng)半徑大約是696000千米,用科學(xué)記數(shù)法表示為米.12.(3分)若一個(gè)多邊形的內(nèi)角和是其外角和的3倍,則這個(gè)多邊形的邊數(shù)是.13.(3分)某學(xué)校為了解本校學(xué)生課外閱讀的情況,從全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成統(tǒng)計(jì)表.已知該校全體學(xué)生人數(shù)為1200人,由此可以估計(jì)每周課外閱讀時(shí)間在1~2(不含1)小時(shí)的學(xué)生有人.每周課外閱讀時(shí)間(小時(shí))0~11~2(不含1)2~3(不含2)超過(guò)3人數(shù)710141914.(3分)已知:(a+6)2+=0,則2b2﹣4b﹣a的值為.15.(3分)如圖,在平面直角坐標(biāo)系中,點(diǎn)M為x軸正半軸上一點(diǎn),過(guò)點(diǎn)M的直線l∥y軸,且直線l分別與反比例函數(shù)y=(x>0)和y=(x>0)的圖象交于P、Q兩點(diǎn),若S△POQ=14,則k的值為.16.(3分)已知拋物線p:y=ax2+bx+c的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過(guò)點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢(mèng)之星”拋物線,直線AC′為拋物線p的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為.三、解答題:(本大題共8個(gè)小題,共72分)解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟.17.(7分)先化簡(jiǎn),再求值:(﹣)÷,其中x滿足2x﹣6=0.18.(8分)學(xué)校實(shí)施新課程改革以來(lái),學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對(duì)該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:(1)本次調(diào)查中,王老師一共調(diào)查了名學(xué)生;(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中一名男生和一名女生的概率.19.(8分)學(xué)校需要購(gòu)買(mǎi)一批籃球和足球,已知一個(gè)籃球比一個(gè)足球的進(jìn)價(jià)高30元,買(mǎi)兩個(gè)籃球和三個(gè)足球一共需要510元.(1)求籃球和足球的單價(jià);(2)根據(jù)實(shí)際需要,學(xué)校決定購(gòu)買(mǎi)籃球和足球共100個(gè),其中籃球購(gòu)買(mǎi)的數(shù)量不少于足球數(shù)量的,學(xué)校可用于購(gòu)買(mǎi)這批籃球和足球的資金最多為10500元.請(qǐng)問(wèn)有幾種購(gòu)買(mǎi)方案?(3)若購(gòu)買(mǎi)籃球x個(gè),學(xué)校購(gòu)買(mǎi)這批籃球和足球的總費(fèi)用為y(元),在(2)的條件下,求哪種方案能使y最小,并求出y的最小值.20.(8分)北京時(shí)間2015年04月25日14時(shí)11分,尼泊爾發(fā)生8.1級(jí)強(qiáng)烈地震,我國(guó)積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作.如圖,某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)21.(9分)如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).(1)求雙曲線的解析式;(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).22.(9分)如圖,在△ABC中,BC是以AB為直徑的⊙O的切線,且⊙O與AC相交于點(diǎn)D,E為BC的中點(diǎn),連接DE.(1)求證:DE是⊙O的切線;(2)連接AE,若∠C=45°,求sin∠CAE的值.23.(11分)如圖,E、F分別是正方形ABCD的邊DC、CB上的點(diǎn),且DE=CF,以AE為邊作正方形AEHG,HE與BC交于點(diǎn)Q,連接DF.(1)求證:△ADE≌△DCF;(2)若E是CD的中點(diǎn),求證:Q為CF的中點(diǎn);(3)連接AQ,設(shè)S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的條件下,判斷S1+S2=S3是否成立?并說(shuō)明理由.24.(12分)已知直線y=kx+b(k≠0)過(guò)點(diǎn)F(0,1),與拋物線y=x2相交于B、C兩點(diǎn).(1)如圖1,當(dāng)點(diǎn)C的橫坐標(biāo)為1時(shí),求直線BC的解析式;(2)在(1)的條件下,點(diǎn)M是直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)M作y軸的平行線,與拋物線交于點(diǎn)D,是否存在這樣的點(diǎn)M,使得以M、D、O、F為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)如圖2,設(shè)B(m.n)(m<0),過(guò)點(diǎn)E(0.﹣1)的直線l∥x軸,BR⊥l于R,CS⊥l于S,連接FR、FS.試判斷△RFS的形狀,并說(shuō)明理由.

2015年四川省資陽(yáng)市中考數(shù)學(xué)試卷參考答案與試題解析一、選擇題:(本大題共10個(gè)小題,每小題3分,共30分)在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)符合題意.21?世紀(jì)*教育網(wǎng)1.(3分)﹣6的絕對(duì)值是()A.6 B.﹣6 C. D.【考點(diǎn)】15:絕對(duì)值.【分析】根據(jù)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),可得負(fù)數(shù)的絕對(duì)值.【解答】解:|﹣6|=6,故選:A.【點(diǎn)評(píng)】本題考查了絕對(duì)值,負(fù)數(shù)的絕對(duì)值是它的相反數(shù).2.(3分)如圖是一個(gè)圓臺(tái),它的主視圖是()A. B. C. D.【考點(diǎn)】U1:簡(jiǎn)單幾何體的三視圖.【分析】主視圖是從物體正面看,所得到的圖形.【解答】解:從幾何體的正面看可得等腰梯形,故選:B.【點(diǎn)評(píng)】本題考查了幾何體的三種視圖,掌握定義是關(guān)鍵.注意所有的看到的棱都應(yīng)表現(xiàn)在三視圖中.3.(3分)下列運(yùn)算結(jié)果為a6的是()A.a(chǎn)2+a3 B.a(chǎn)2?a3 C.(﹣a2)3 D.a(chǎn)8÷a2【考點(diǎn)】35:合并同類項(xiàng);46:同底數(shù)冪的乘法;47:冪的乘方與積的乘方;48:同底數(shù)冪的除法.【分析】根據(jù)合并同類項(xiàng)、同底數(shù)冪的乘除法以及積的乘方和冪的乘方進(jìn)行計(jì)算即可.【解答】解:A、a3÷a2不能合并,故A錯(cuò)誤;B、a2?a3=a5,故B錯(cuò)誤;C、(﹣a2?)3=﹣a6,故C錯(cuò)誤;D、a8÷a2=a6,故D正確;故選:D.【點(diǎn)評(píng)】本題考查了同底數(shù)冪的乘除法、合并同類項(xiàng)以及積的乘方和冪的乘方,是基礎(chǔ)知識(shí)要熟練掌握.4.(3分)一組數(shù)據(jù)3、5、8、3、4的眾數(shù)與中位數(shù)分別是()A.3,8 B.3,3 C.3,4 D.4,3【考點(diǎn)】W4:中位數(shù);W5:眾數(shù).【分析】根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù).【解答】解:把這組數(shù)據(jù)從小到大排列:3、3、4、5、8,3出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是3.處于中間位置的那個(gè)數(shù)是4,由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是4;故選:C.【點(diǎn)評(píng)】本題為統(tǒng)計(jì)題,考查中位數(shù)與眾數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會(huì)出錯(cuò).眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè).5.(3分)如圖,已知AB∥CD,∠C=70°,∠F=30°,則∠A的度數(shù)為()A.30° B.35° C.40° D.45°【考點(diǎn)】JA:平行線的性質(zhì).【專題】11:計(jì)算題.【分析】先根據(jù)平行線的性質(zhì)得∠BEF=∠C=70°,然后根據(jù)三角形外角性質(zhì)計(jì)算∠A的度數(shù).【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故選:C.【點(diǎn)評(píng)】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.6.(3分)如圖,已知數(shù)軸上的點(diǎn)A、B、C、D分別表示數(shù)﹣2、1、2、3,則表示數(shù)3﹣的點(diǎn)P應(yīng)落在線段()A.AO上 B.OB上 C.BC上 D.CD上【考點(diǎn)】29:實(shí)數(shù)與數(shù)軸;2B:估算無(wú)理數(shù)的大小.【分析】根據(jù)估計(jì)無(wú)理數(shù)的方法得出0<3﹣<1,進(jìn)而得出答案.【解答】解:∵2<<3,∴0<3﹣<1,故表示數(shù)3﹣的點(diǎn)P應(yīng)落在線段OB上.故選:B.【點(diǎn)評(píng)】此題主要考查了估算無(wú)理數(shù)的大小,得出的取值范圍是解題關(guān)鍵.7.(3分)若順次連接四邊形ABCD四邊的中點(diǎn),得到的圖形是一個(gè)矩形,則四邊形ABCD一定是()A.矩形 B.菱形 C.對(duì)角線相等的四邊形 D.對(duì)角線互相垂直的四邊形【考點(diǎn)】LN:中點(diǎn)四邊形.【分析】首先根據(jù)三角形中位線定理知:所得四邊形的對(duì)邊都平行且相等,那么其必為平行四邊形,若所得四邊形是矩形,那么鄰邊互相垂直,故原四邊形的對(duì)角線必互相垂直,由此得解.【解答】已知:如右圖,四邊形EFGH是矩形,且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn),求證:四邊形ABCD是對(duì)角線垂直的四邊形.證明:由于E、F、G、H分別是AB、BC、CD、AD的中點(diǎn),根據(jù)三角形中位線定理得:EH∥FG∥BD,EF∥AC∥HG;∵四邊形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故選:D.【點(diǎn)評(píng)】本題主要考查了矩形的性質(zhì)和三角形中位線定理,解題的關(guān)鍵是構(gòu)造三角形利用三角形的中位線定理解答.8.(3分)如圖,AD、BC是⊙O的兩條互相垂直的直徑,點(diǎn)P從點(diǎn)O出發(fā),沿O→C→D→O的路線勻速運(yùn)動(dòng).設(shè)∠APB=y(單位:度),那么y關(guān)于點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的函數(shù)圖象大致是()A. B. C. D.【考點(diǎn)】E7:動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象.【分析】根據(jù)圖示,分三種情況:(1)當(dāng)點(diǎn)P沿O→C運(yùn)動(dòng)時(shí);(2)當(dāng)點(diǎn)P沿C→D運(yùn)動(dòng)時(shí);(3)當(dāng)點(diǎn)P沿D→O運(yùn)動(dòng)時(shí);分別判斷出y的取值情況,進(jìn)而判斷出y與點(diǎn)P運(yùn)動(dòng)的時(shí)間x(單位:秒)的關(guān)系圖是哪個(gè)即可.【解答】解:(1)當(dāng)點(diǎn)P沿O→C運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)P在點(diǎn)O的位置時(shí),y=90°,當(dāng)點(diǎn)P在點(diǎn)C的位置時(shí),∵OA=OC,∴y=45°,∴y由90°逐漸減小到45°;(2)當(dāng)點(diǎn)P沿C→D運(yùn)動(dòng)時(shí),根據(jù)圓周角定理,可得y=90°÷2=45°;(3)當(dāng)點(diǎn)P沿D→O運(yùn)動(dòng)時(shí),當(dāng)點(diǎn)P在點(diǎn)D的位置時(shí),y=45°,當(dāng)點(diǎn)P在點(diǎn)0的位置時(shí),y=90°,∴y由45°逐漸增加到90°.故選:B.【點(diǎn)評(píng)】(1)此題主要考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,解答此類問(wèn)題的關(guān)鍵是通過(guò)看圖獲取信息,并能解決生活中的實(shí)際問(wèn)題,用圖象解決問(wèn)題時(shí),要理清圖象的含義即學(xué)會(huì)識(shí)圖.(2)此題還考查了圓周角定理的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等;相等的圓周角所對(duì)的弧也相等.9.(3分)如圖,透明的圓柱形容器(容器厚度忽略不計(jì))的高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離容器底部3cm的點(diǎn)B處有一飯粒,此時(shí)一只螞蟻正好在容器外壁,且離容器上沿3cm的點(diǎn)A處,則螞蟻吃到飯粒需爬行的最短路徑是()A.13cm B.2cm C.cm D.2cm【考點(diǎn)】KV:平面展開(kāi)﹣?zhàn)疃搪窂絾?wèn)題.【分析】將容器側(cè)面展開(kāi),建立A關(guān)于EF的對(duì)稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長(zhǎng)度即為所求.【解答】解:如圖:∵高為12cm,底面周長(zhǎng)為10cm,在容器內(nèi)壁離容器底部3cm的點(diǎn)B處有一飯粒,此時(shí)螞蟻正好在容器外壁,離容器上沿3cm與飯粒相對(duì)的點(diǎn)A處,∴A′D=5cm,BD=12﹣3+AE=12cm,∴將容器側(cè)面展開(kāi),作A關(guān)于EF的對(duì)稱點(diǎn)A′,連接A′B,則A′B即為最短距離,A′B===13(Cm).故選:A.【點(diǎn)評(píng)】本題考查了平面展開(kāi)﹣﹣﹣?zhàn)疃搪窂絾?wèn)題,將圖形展開(kāi),利用軸對(duì)稱的性質(zhì)和勾股定理進(jìn)行計(jì)算是解題的關(guān)鍵.同時(shí)也考查了同學(xué)們的創(chuàng)造性思維能力.10.(3分)如圖,在△ABC中,∠ACB=90°,AC=BC=1,E、F為線段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過(guò)點(diǎn)E、F分別作BC、AC的垂線相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;③AF+BE=EF;④MG?MH=,其中正確結(jié)論為()A.①②③ B.①③④ C.①②④ D.①②③④【考點(diǎn)】SO:相似形綜合題.【專題】16:壓軸題.【分析】①由題意知,△ABC是等腰直角三角形,根據(jù)等腰直角三角形即可作出判斷;②如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)H與點(diǎn)B重合,可得MG∥BC,四邊形MGCB是矩形,進(jìn)一步得到FG是△ACB的中位線,從而作出判斷;③如圖2所示,SAS可證△ECF≌△ECD,根據(jù)全等三角形的性質(zhì)和勾股定理即可作出判斷;④根據(jù)AA可證△ACE∽△BFC,根據(jù)相似三角形的性質(zhì)可得AF?BF=AC?BC=1,由題意知四邊形CHMG是矩形,再根據(jù)平行線的性質(zhì)和等量代換得到MG?MH=AE×BF=AE?BF=AC?BC=,依此即可作出判斷.【解答】解:①由題意知,△ABC是等腰直角三角形,∴AB==,故①正確;②如圖1,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)H與點(diǎn)B重合,∴MB⊥BC,∠MBC=90°,∵M(jìn)G⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四邊形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位線,∴GC=AC=MH,故②正確;③如圖2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.將△ACF順時(shí)針旋轉(zhuǎn)90°至△BCD,則CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③錯(cuò)誤;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AE?BF=AC?BC=1,由題意知四邊形CHMG是矩形,∴MG∥BC,MH=CG,MG=CH,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG?MH=AE×BF=AE?BF=AC?BC=,故④正確.故選:C.【點(diǎn)評(píng)】考查了相似形綜合題,涉及的知識(shí)點(diǎn)有:等腰直角三角形的判定和性質(zhì),平行線的判定和性質(zhì),矩形的判定和性質(zhì),三角形中位線的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,相似三角形的判定和性質(zhì),綜合性較強(qiáng),有一定的難度.二、填空題:(本大題共6個(gè)小題,每小題3分,共18分)11.(3分)太陽(yáng)半徑大約是696000千米,用科學(xué)記數(shù)法表示為6.96×108米.【考點(diǎn)】1I:科學(xué)記數(shù)法—表示較大的數(shù).【專題】12:應(yīng)用題.【分析】先把696000千米轉(zhuǎn)化成696000000米,然后再用科學(xué)記數(shù)法記數(shù)記為6.96×108米.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).【解答】解:696000千米=696000000米=6.96×108米.【點(diǎn)評(píng)】用科學(xué)記數(shù)法表示一個(gè)數(shù)的方法是:(1)確定a:a是只有一位整數(shù)的數(shù);(2)確定n:當(dāng)原數(shù)的絕對(duì)值≥10時(shí),n為正整數(shù),n等于原數(shù)的整數(shù)位數(shù)減1;當(dāng)原數(shù)的絕對(duì)值<1時(shí),n為負(fù)整數(shù),n的絕對(duì)值等于原數(shù)中左起第一個(gè)非零數(shù)前零的個(gè)數(shù)(含整數(shù)位數(shù)上的零).12.(3分)若一個(gè)多邊形的內(nèi)角和是其外角和的3倍,則這個(gè)多邊形的邊數(shù)是八.【考點(diǎn)】L3:多邊形內(nèi)角與外角.【分析】任何多邊形的外角和是360°,即這個(gè)多邊形的內(nèi)角和是3×360°.n邊形的內(nèi)角和是(n﹣2)?180°,如果已知多邊形的邊數(shù),就可以得到一個(gè)關(guān)于邊數(shù)的方程,解方程就可以求出多邊形的邊數(shù).【解答】解:設(shè)多邊形的邊數(shù)為n,根據(jù)題意,得(n﹣2)?180=3×360,解得n=8.則這個(gè)多邊形的邊數(shù)是八.【點(diǎn)評(píng)】已知多邊形的內(nèi)角和求邊數(shù),可以轉(zhuǎn)化為方程的問(wèn)題來(lái)解決.13.(3分)某學(xué)校為了解本校學(xué)生課外閱讀的情況,從全體學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成統(tǒng)計(jì)表.已知該校全體學(xué)生人數(shù)為1200人,由此可以估計(jì)每周課外閱讀時(shí)間在1~2(不含1)小時(shí)的學(xué)生有240人.每周課外閱讀時(shí)間(小時(shí))0~11~2(不含1)2~3(不含2)超過(guò)3人數(shù)7101419【考點(diǎn)】V5:用樣本估計(jì)總體.【分析】先求出每周課外閱讀時(shí)間在1~2(不含1)小時(shí)的學(xué)生所占的百分比,再乘以全校的人數(shù),即可得出答案.【解答】解:根據(jù)題意得:1200×=240(人),答:估計(jì)每周課外閱讀時(shí)間在1~2(不含1)小時(shí)的學(xué)生有240人;故答案為:240.【點(diǎn)評(píng)】本題考查從統(tǒng)計(jì)表中獲取信息的能力,及統(tǒng)計(jì)中用樣本估計(jì)總體的思想.14.(3分)已知:(a+6)2+=0,則2b2﹣4b﹣a的值為12.【考點(diǎn)】1F:非負(fù)數(shù)的性質(zhì):偶次方;23:非負(fù)數(shù)的性質(zhì):算術(shù)平方根.【分析】首先根據(jù)非負(fù)數(shù)的性質(zhì)可求出a的值,和2b2﹣2b=6,進(jìn)而可求出2b2﹣4b﹣a的值.【解答】解:∵(a+6)2+=0,∴a+6=0,b2﹣2b﹣3=0,解得,a=﹣6,b2﹣2b=3,可得2b2﹣4b=6,則2b2﹣4b﹣a=6﹣(﹣6)=12,故答案為:12.【點(diǎn)評(píng)】本題主要考查了非負(fù)數(shù)的性質(zhì),初中階段有三種類型的非負(fù)數(shù):絕對(duì)值、偶次方、二次根式(算術(shù)平方根).當(dāng)它們相加和為0時(shí),必須滿足其中的每一項(xiàng)都等于0.15.(3分)如圖,在平面直角坐標(biāo)系中,點(diǎn)M為x軸正半軸上一點(diǎn),過(guò)點(diǎn)M的直線l∥y軸,且直線l分別與反比例函數(shù)y=(x>0)和y=(x>0)的圖象交于P、Q兩點(diǎn),若S△POQ=14,則k的值為﹣20.【考點(diǎn)】G5:反比例函數(shù)系數(shù)k的幾何意義;G8:反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.【分析】由于S△POQ=S△OMQ+S△OMP,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到|k|+×|8|=14,然后結(jié)合函數(shù)y=的圖象所在的象限解方程得到滿足條件的k的值.【解答】解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案為﹣20.【點(diǎn)評(píng)】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義:在反比例函數(shù)的圖象上任意一點(diǎn)向坐標(biāo)軸作垂線,這一點(diǎn)和垂足以及坐標(biāo)原點(diǎn)所構(gòu)成的三角形的面積是|k|,且保持不變.也考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.16.(3分)已知拋物線p:y=ax2+bx+c的頂點(diǎn)為C,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)為C′,我們稱以A為頂點(diǎn)且過(guò)點(diǎn)C′,對(duì)稱軸與y軸平行的拋物線為拋物線p的“夢(mèng)之星”拋物線,直線AC′為拋物線p的“夢(mèng)之星”直線.若一條拋物線的“夢(mèng)之星”拋物線和“夢(mèng)之星”直線分別是y=x2+2x+1和y=2x+2,則這條拋物線的解析式為y=x2﹣2x﹣3.【考點(diǎn)】H3:二次函數(shù)的性質(zhì);HA:拋物線與x軸的交點(diǎn).【專題】16:壓軸題;23:新定義.【分析】先求出y=x2+2x+1和y=2x+2的交點(diǎn)C′的坐標(biāo)為(1,4),再求出“夢(mèng)之星”拋物線y=x2+2x+1的頂點(diǎn)A坐標(biāo)(﹣1,0),接著利用點(diǎn)C和點(diǎn)C′關(guān)于x軸對(duì)稱得到C(1,﹣4),則可設(shè)頂點(diǎn)式y(tǒng)=a(x﹣1)2﹣4,然后把A點(diǎn)坐標(biāo)代入求出a的值即可得到原拋物線解析式.【解答】解:∵y=x2+2x+1=(x+1)2,∴A點(diǎn)坐標(biāo)為(﹣1,0),解方程組得或,∴點(diǎn)C′的坐標(biāo)為(1,4),∵點(diǎn)C和點(diǎn)C′關(guān)于x軸對(duì)稱,∴C(1,﹣4),設(shè)原拋物線解析式為y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原拋物線解析式為y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案為y=x2﹣2x﹣3.【點(diǎn)評(píng)】本題考查了二次函數(shù)與x軸的交點(diǎn):求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo),令y=0,即ax2+bx+c=0,解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).△=b2﹣4ac決定拋物線與x軸的交點(diǎn)個(gè)數(shù),△=b2﹣4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2﹣4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2﹣4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).三、解答題:(本大題共8個(gè)小題,共72分)解答應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟.17.(7分)先化簡(jiǎn),再求值:(﹣)÷,其中x滿足2x﹣6=0.【考點(diǎn)】6D:分式的化簡(jiǎn)求值.【分析】根據(jù)分式混合運(yùn)算的法則把原式進(jìn)行化簡(jiǎn),再求出x的值代入進(jìn)行計(jì)算即可【解答】解:原式=÷=?=.∵2x﹣6=0,∴x=3,當(dāng)x=3時(shí),原式=.【點(diǎn)評(píng)】本題考查的是分式的化簡(jiǎn)求值,熟知分式混合運(yùn)算的法則是解答此題的關(guān)鍵.18.(8分)學(xué)校實(shí)施新課程改革以來(lái),學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對(duì)該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:(1)本次調(diào)查中,王老師一共調(diào)查了20名學(xué)生;(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中一名男生和一名女生的概率.【考點(diǎn)】VB:扇形統(tǒng)計(jì)圖;VC:條形統(tǒng)計(jì)圖;X6:列表法與樹(shù)狀圖法.【分析】(1)由題意可得:王老師一共調(diào)查學(xué)生:(2+1)÷15%=20(名);(2)由題意可得:C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);繼而可補(bǔ)全條形統(tǒng)計(jì)圖;(3)首先根據(jù)題意列出表格,再利用表格求得所有等可能的結(jié)果與恰好選中一名男生和一名女生的情況,繼而求得答案.【解答】解:(1)根據(jù)題意得:王老師一共調(diào)查學(xué)生:(2+1)÷15%=20(名);故答案為:20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2…(7分)女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結(jié)果,其中,一男一女的有3種,所以所選兩位同學(xué)恰好是一位男生和一位女生的概率為:=.【點(diǎn)評(píng)】此題考查了列表法或樹(shù)狀圖法求概率以及條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19.(8分)學(xué)校需要購(gòu)買(mǎi)一批籃球和足球,已知一個(gè)籃球比一個(gè)足球的進(jìn)價(jià)高30元,買(mǎi)兩個(gè)籃球和三個(gè)足球一共需要510元.(1)求籃球和足球的單價(jià);(2)根據(jù)實(shí)際需要,學(xué)校決定購(gòu)買(mǎi)籃球和足球共100個(gè),其中籃球購(gòu)買(mǎi)的數(shù)量不少于足球數(shù)量的,學(xué)校可用于購(gòu)買(mǎi)這批籃球和足球的資金最多為10500元.請(qǐng)問(wèn)有幾種購(gòu)買(mǎi)方案?(3)若購(gòu)買(mǎi)籃球x個(gè),學(xué)校購(gòu)買(mǎi)這批籃球和足球的總費(fèi)用為y(元),在(2)的條件下,求哪種方案能使y最小,并求出y的最小值.【考點(diǎn)】8A:一元一次方程的應(yīng)用;CE:一元一次不等式組的應(yīng)用;FH:一次函數(shù)的應(yīng)用.【分析】(1)設(shè)一個(gè)籃球x元,則一個(gè)足球(x﹣30)元,根據(jù)“買(mǎi)兩個(gè)籃球和三個(gè)足球一共需要510元”列出方程,即可解答;(2)設(shè)購(gòu)買(mǎi)籃球x個(gè),足球(100﹣x)個(gè),根據(jù)“籃球購(gòu)買(mǎi)的數(shù)量不少于足球數(shù)量的,學(xué)??捎糜谫?gòu)買(mǎi)這批籃球和足球的資金最多為10500元”,列出不等式組,求出x的取值范圍,由x為正整數(shù),即可解答;(3)表示出總費(fèi)用y,利用一次函數(shù)的性質(zhì),即可確定x的取值,即可確定最小值.【解答】解:(1)設(shè)一個(gè)籃球x元,則一個(gè)足球(x﹣30)元,由題意得:2x+3(x﹣30)=510,解得:x=120,∴一個(gè)籃球120元,一個(gè)足球90元.(2)設(shè)購(gòu)買(mǎi)籃球x個(gè),足球(100﹣x)個(gè),由題意可得:,解得:40≤x≤50,∵x為正整數(shù),∴x=40,41,42,43,44,45,46,47,48,49,50,∴共有11種購(gòu)買(mǎi)方案.(3)由題意可得y=120x+90(100﹣x)=30x+9000(40≤x≤50)∵k=30>0,∴y隨x的增大而增大,∴當(dāng)x=40時(shí),y有最小值,y最小=30×40+9000=10200(元),所以當(dāng)x=40時(shí),y最小值為10200元.【點(diǎn)評(píng)】本題考查了一次函數(shù)的應(yīng)用,解決本題的關(guān)鍵是根據(jù)已知條件,列出一元一次方程和一元一次不等式組,應(yīng)用一次函數(shù)的性質(zhì)解決問(wèn)題.20.(8分)北京時(shí)間2015年04月25日14時(shí)11分,尼泊爾發(fā)生8.1級(jí)強(qiáng)烈地震,我國(guó)積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作.如圖,某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【考點(diǎn)】T8:解直角三角形的應(yīng)用.【分析】過(guò)C點(diǎn)作AB的垂線交AB的延長(zhǎng)線于點(diǎn)D,通過(guò)解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用銳角三角函數(shù)的定義即可求出CD的值.【解答】解:作CD⊥AB交AB延長(zhǎng)線于D,設(shè)CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3米.所以生命跡象所在位置C的深度約為3米.【點(diǎn)評(píng)】本題考查的是解直角三角形的應(yīng)用,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.21.(9分)如圖,直線y=ax+1與x軸、y軸分別相交于A、B兩點(diǎn),與雙曲線y=(x>0)相交于點(diǎn)P,PC⊥x軸于點(diǎn)C,且PC=2,點(diǎn)A的坐標(biāo)為(﹣2,0).(1)求雙曲線的解析式;(2)若點(diǎn)Q為雙曲線上點(diǎn)P右側(cè)的一點(diǎn),且QH⊥x軸于H,當(dāng)以點(diǎn)Q、C、H為頂點(diǎn)的三角形與△AOB相似時(shí),求點(diǎn)Q的坐標(biāo).【考點(diǎn)】GB:反比例函數(shù)綜合題.【專題】15:綜合題.【分析】(1)把A坐標(biāo)代入直線解析式求出a的值,確定出直線解析式,把y=2代入直線解析式求出x的值,確定出P坐標(biāo),代入反比例解析式求出k的值,即可確定出雙曲線解析式;(2)設(shè)Q(a,b),代入反比例解析式得到b=,分兩種情況考慮:當(dāng)△QCH∽△BAO時(shí);當(dāng)△QCH∽△ABO時(shí),由相似得比例求出a的值,進(jìn)而確定出b的值,即可得出Q坐標(biāo).【解答】解:(1)把A(﹣2,0)代入y=ax+1中,求得a=,∴y=x+1,由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,則雙曲線解析式為y=;(2)設(shè)Q(m,n),∵Q(m,n)在y=上,∴n=,當(dāng)△QCH∽△BAO時(shí),可得=,即=,∴m﹣2=2n,即m﹣2=,解得:m=4或m=﹣2(舍去),∴Q(4,1);當(dāng)△QCH∽△ABO時(shí),可得=,即=,整理得:2a﹣4=,解得:a=1+或a=1﹣(舍),∴Q(1+,2﹣2).綜上,Q(4,1)或Q(1+,2﹣2).【點(diǎn)評(píng)】此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:相似三角形的性質(zhì),待定系數(shù)法確定直線解析式,待定系數(shù)法確定反比例函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.22.(9分)如圖,在△ABC中,BC是以AB為直徑的⊙O的切線,且⊙O與AC相交于點(diǎn)D,E為BC的中點(diǎn),連接DE.(1)求證:DE是⊙O的切線;(2)連接AE,若∠C=45°,求sin∠CAE的值.【考點(diǎn)】KQ:勾股定理;MD:切線的判定;T7:解直角三角形.【分析】(1)連接DO,DB,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)E為BC的中點(diǎn)可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性質(zhì)就可以得出∠ODE=90°就可以得出結(jié)論.(2)作EF⊥CD于F,設(shè)EF=x,由∠C=45°,得出△CEF、△ABC都是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)和勾股定理求得BE=CE=x,AB=BC=2x,AE=x,進(jìn)而就可求得sin∠CAE的值.【解答】解:(1)連接OD,BD,∴OD=OB∴∠ODB=∠OBD.∵AB是直徑,∴∠ADB=90°,∴∠CDB=90°.∵E為BC的中點(diǎn),∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB為直徑的⊙O的切線,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切線;(2)作EF⊥CD于F,設(shè)EF=x∵∠C=45°,∴△CEF、△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=x,∴AB=BC=2x,在RT△ABE中,AE==x,∴sin∠CAE==.【點(diǎn)評(píng)】本題考查了圓周角定理的運(yùn)用,直角三角形的性質(zhì)的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,切線的判定定理的運(yùn)用,勾股定理的運(yùn)用,解答時(shí)正確添加輔助線是關(guān)鍵.23.(11分)如圖,E、F分別是正方形ABCD的邊DC、CB上的點(diǎn),且DE=CF,以AE為邊作正方形AEHG,HE與BC交于點(diǎn)Q,連接DF.(1)求證:△ADE≌△DCF;(2)若E是CD的中點(diǎn),求證:Q為CF的中點(diǎn);(3)連接AQ,設(shè)S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的條件下,判斷S1+S2=S3是否成立?并說(shuō)明理由.【考點(diǎn)】LO:四邊形綜合題.【專題】16:壓軸題.【分析】(1)由正方形的性質(zhì)得出AD=DC,∠ADE=∠DCF=90°,再由SAS即可證出△ADE≌△DCF;(2)先證出∠DAE=∠CEQ,再證明△ADE∽△ECQ,得出比例式,證出CQ=DE,即可得出結(jié)論;(3)先證明△AEQ∽△ECQ,得出△AEQ∽△ECQ∽△ADE,得出面積比等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論