




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河南省周口市鄲城一高三第二次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,長(zhǎng)方體中,,,點(diǎn)T在棱上,若平面.則()A.1 B. C.2 D.2.在區(qū)間上隨機(jī)取一個(gè)數(shù),使直線(xiàn)與圓相交的概率為()A. B. C. D.3.關(guān)于函數(shù)有下述四個(gè)結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.①②④ B.①③ C.①④ D.②④4.中,,為的中點(diǎn),,,則()A. B. C. D.25.二項(xiàng)式的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3606.在中,角的對(duì)邊分別為,若.則角的大小為()A. B. C. D.7.已知正方體的棱長(zhǎng)為1,平面與此正方體相交.對(duì)于實(shí)數(shù),如果正方體的八個(gè)頂點(diǎn)中恰好有個(gè)點(diǎn)到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.8.如圖,正方形網(wǎng)格紙中的實(shí)線(xiàn)圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對(duì) B.3對(duì)C.4對(duì) D.5對(duì)9.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知等式成立,則()A.0 B.5 C.7 D.1311.2019年10月1日,中華人民共和國(guó)成立70周年,舉國(guó)同慶.將2,0,1,9,10這5個(gè)數(shù)字按照任意次序排成一行,拼成一個(gè)6位數(shù),則產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為A.96 B.84 C.120 D.36012.若,則“”是“的展開(kāi)式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿(mǎn)足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.14.如圖在三棱柱中,,,,點(diǎn)為線(xiàn)段上一動(dòng)點(diǎn),則的最小值為_(kāi)_______.15.已知,滿(mǎn)足約束條件,則的最小值為_(kāi)_____.16.的展開(kāi)式中含的系數(shù)為_(kāi)_________.(用數(shù)字填寫(xiě)答案)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線(xiàn)段上的點(diǎn),過(guò)三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個(gè)補(bǔ)充到已知條件中,解答下列問(wèn)題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線(xiàn)與平面所成角的正弦值.18.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點(diǎn),已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.19.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對(duì)及,不等式恒成立,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)函數(shù)(其中),且函數(shù)在處的切線(xiàn)與直線(xiàn)平行.(1)求的值;(2)若函數(shù),求證:恒成立.21.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)線(xiàn)面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線(xiàn)段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長(zhǎng)方體中,,點(diǎn)T在棱上,若平面.則,則,所以,則,所以,故選:D.【點(diǎn)睛】本題考查了直線(xiàn)與平面垂直的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
根據(jù)直線(xiàn)與圓相交,可求出k的取值范圍,根據(jù)幾何概型可求出相交的概率.【詳解】因?yàn)閳A心,半徑,直線(xiàn)與圓相交,所以,解得所以相交的概率,故選C.【點(diǎn)睛】本題主要考查了直線(xiàn)與圓的位置關(guān)系,幾何概型,屬于中檔題.3、C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對(duì)四個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的編號(hào).【詳解】的定義域?yàn)?由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯(cuò)誤.當(dāng)時(shí),,且存在,使.所以當(dāng)時(shí),;由于為偶函數(shù),所以時(shí),所以的最大值為,所以③錯(cuò)誤.依題意,,當(dāng)時(shí),,所以令,解得,令,解得.所以在區(qū)間,有兩個(gè)零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個(gè)零點(diǎn).故在區(qū)間上有4個(gè)零點(diǎn).所以④正確.綜上所述,正確的結(jié)論序號(hào)為①④.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.4、D【解析】
在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.5、A【解析】試題分析:因?yàn)榈恼归_(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.6、A【解析】
由正弦定理化簡(jiǎn)已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.7、B【解析】
此題畫(huà)出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個(gè)點(diǎn)到平面的距離為;如圖(2)恰好有4個(gè)點(diǎn)到平面的距離為;如圖(3)恰好有6個(gè)點(diǎn)到平面的距離為.所以本題答案為B.【點(diǎn)睛】本題以空間幾何體為載體考查點(diǎn),面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力和知識(shí)方法的遷移能力,屬于難題.8、C【解析】
畫(huà)出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對(duì).【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.9、A【解析】
結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識(shí).10、D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.11、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開(kāi)頭的排列數(shù)共個(gè),其中含有2個(gè)10的排列數(shù)共個(gè),所以產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為.故選B.12、B【解析】
求得的二項(xiàng)展開(kāi)式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開(kāi)式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_(kāi)式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問(wèn)題的能力和計(jì)算能力,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿(mǎn)足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿(mǎn)足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問(wèn)題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問(wèn)題進(jìn)行分析.屬于難題.14、【解析】
把繞著進(jìn)行旋轉(zhuǎn),當(dāng)四點(diǎn)共面時(shí),運(yùn)用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個(gè)平面,展開(kāi)圖如圖所示,若,,三點(diǎn)共線(xiàn)時(shí)最小為,為直角三角形,故答案為:【點(diǎn)睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點(diǎn)之間線(xiàn)段最短,解直角三角形進(jìn)行求解,考查了空間想象能力和計(jì)算能力,屬于中檔題.15、2【解析】
作出可行域,平移基準(zhǔn)直線(xiàn)到處,求得的最小值.【詳解】畫(huà)出可行域如下圖所示,由圖可知平移基準(zhǔn)直線(xiàn)到處時(shí),取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線(xiàn)性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16、【解析】由題意得,二項(xiàng)式展開(kāi)式的通項(xiàng)為,令,則,所以得系數(shù)為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個(gè)條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線(xiàn)面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點(diǎn).設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線(xiàn)為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個(gè)法向量,因?yàn)?,所以直線(xiàn)與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點(diǎn),即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點(diǎn)睛】本題考查空間點(diǎn)、線(xiàn)、面位置關(guān)系,以及體積、直線(xiàn)與平面所成的角,考查計(jì)算求解能力,屬于中檔題.18、(Ⅰ)證明見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)先證明
,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據(jù)題意以為軸、軸、軸建立空間直角坐標(biāo)系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則令,則,是平面的一個(gè)法向量設(shè)平面的一個(gè)法向量為令,則是平面的一個(gè)法向量=又二面角為鈍二面角,其余弦值為.【點(diǎn)睛】本題考查線(xiàn)面、面面垂直的判定定理與性質(zhì)定理,考查向量法求二面角的余弦值,考查直觀想象能力與運(yùn)算求解能力,屬于中檔題.19、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當(dāng)時(shí),由,解得;當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得.所以不等式的解集為.(Ⅱ)因?yàn)?,所?由題意知對(duì),,即,因?yàn)?,所以,解?【點(diǎn)睛】⑴絕對(duì)值不等式解法的基本思路是:去掉絕對(duì)值號(hào),把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對(duì)值定義法;②平方法;③零點(diǎn)區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過(guò)恒等變形使參數(shù)與主元分離于不等式兩端,從而問(wèn)題轉(zhuǎn)化為求主元函數(shù)的最值,進(jìn)而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.20、(1)(2)證明見(jiàn)解析【解析】
(1)求導(dǎo)得到,解得答案.(2)變形得到,令函數(shù),求導(dǎo)得到函數(shù)單調(diào)區(qū)間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數(shù),,令解得,當(dāng)時(shí),時(shí).函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,而函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,恒成立.【點(diǎn)睛】本題考查了根據(jù)切線(xiàn)求參數(shù),證明不等式,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力,綜合應(yīng)用能力.21、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;(Ⅱ)可通過(guò)必要性探路,當(dāng)時(shí),由知,又由于,則,當(dāng),,結(jié)合零點(diǎn)存在定理可判斷必存在使得,得,,化簡(jiǎn)得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;則.綜上,的最大值為3.【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題22、(1)見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1),分,,,四種情況討論即可;(2)問(wèn)題轉(zhuǎn)化
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 安丘市2025屆數(shù)學(xué)三年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 市政工程問(wèn)題集錦與試題答案精析
- 2024年水利水電工程新技術(shù)應(yīng)用研究及試題及答案
- 2025年經(jīng)濟(jì)師考試實(shí)戰(zhàn)試題及答案
- 小區(qū)導(dǎo)視系統(tǒng)設(shè)計(jì)方案匯報(bào)
- 水利水電工程計(jì)算方法與試題及答案
- 公共關(guān)系社會(huì)化媒體策略試題及答案
- 道路交通流量統(tǒng)計(jì)與分析技術(shù)試題及答案
- 航空航天材料科技應(yīng)用知識(shí)試題
- 農(nóng)業(yè)生態(tài)環(huán)保技術(shù)推廣應(yīng)用協(xié)議
- 提高安全意識(shí)共建平安校園
- 2025年高考作文備考之熱點(diǎn)時(shí)事素材資料
- 2025安徽蚌埠市龍子湖區(qū)產(chǎn)業(yè)發(fā)展有限公司招聘22人筆試參考題庫(kù)附帶答案詳解
- 華為筆試題目大全及答案
- 產(chǎn)業(yè)研究報(bào)告-中國(guó)水環(huán)境監(jiān)測(cè)行業(yè)發(fā)展現(xiàn)狀、市場(chǎng)規(guī)模及投資前景分析(智研咨詢(xún))
- 【MOOC】理解馬克思-南京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- JGT266-2011 泡沫混凝土標(biāo)準(zhǔn)規(guī)范
- FZ/T 21009-2015短毛條
- 禾川x3系列伺服說(shuō)明書(shū)
- 各種面試方法詳解
- 常用H型鋼理論重量表格
評(píng)論
0/150
提交評(píng)論