湖南省長沙市長沙縣第九中學2025屆高三第三次測評數學試卷含解析_第1頁
湖南省長沙市長沙縣第九中學2025屆高三第三次測評數學試卷含解析_第2頁
湖南省長沙市長沙縣第九中學2025屆高三第三次測評數學試卷含解析_第3頁
湖南省長沙市長沙縣第九中學2025屆高三第三次測評數學試卷含解析_第4頁
湖南省長沙市長沙縣第九中學2025屆高三第三次測評數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙市長沙縣第九中學2025屆高三第三次測評數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為拋物線的焦點,點在拋物線上,且,過點的動直線與拋物線交于兩點,為坐標原點,拋物線的準線與軸的交點為.給出下列四個命題:①在拋物線上滿足條件的點僅有一個;②若是拋物線準線上一動點,則的最小值為;③無論過點的直線在什么位置,總有;④若點在拋物線準線上的射影為,則三點在同一條直線上.其中所有正確命題的個數為()A.1 B.2 C.3 D.42.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.3.已知,函數,若函數恰有三個零點,則()A. B.C. D.4.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有5.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.6.已知函數,且關于的方程有且只有一個實數根,則實數的取值范圍().A. B. C. D.7.對某兩名高三學生在連續(xù)9次數學測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關于這兩位同學的數學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據甲同學成績折線圖提供的數據進行統(tǒng)計,估計該同學平均成績在區(qū)間110,120內;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數為()A.4 B.3 C.2 D.18.已知點,是函數的函數圖像上的任意兩點,且在點處的切線與直線AB平行,則()A.,b為任意非零實數 B.,a為任意非零實數C.a、b均為任意實數 D.不存在滿足條件的實數a,b9.如果,那么下列不等式成立的是()A. B.C. D.10.已知隨機變量滿足,,.若,則()A., B.,C., D.,11.若雙曲線:繞其對稱中心旋轉后可得某一函數的圖象,則的離心率等于()A. B. C.2或 D.2或12.設不等式組表示的平面區(qū)域為,若從圓:的內部隨機選取一點,則取自的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數列和的前項和分別為和,若,則______.14.設,分別是定義在上的奇函數和偶函數,且,則_________15.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.16.某大學、、、四個不同的專業(yè)人數占本??側藬档谋壤来螢?、、、,現欲采用分層抽樣的方法從這四個專業(yè)的總人數中抽取人調查畢業(yè)后的就業(yè)情況,則專業(yè)應抽取_________人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.18.(12分)如圖,在平面直角坐標系xOy中,已知橢圓的離心率為,且過點.為橢圓的右焦點,為橢圓上關于原點對稱的兩點,連接分別交橢圓于兩點.⑴求橢圓的標準方程;⑵若,求的值;⑶設直線,的斜率分別為,,是否存在實數,使得,若存在,求出的值;若不存在,請說明理由.19.(12分)已知函數,.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.20.(12分)已知各項均為正數的數列的前項和為,且,(,且)(1)求數列的通項公式;(2)證明:當時,21.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin22.(10分)已知是遞增的等比數列,,且、、成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,,求數列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

①:由拋物線的定義可知,從而可求的坐標;②:做關于準線的對稱點為,通過分析可知當三點共線時取最小值,由兩點間的距離公式,可求此時最小值;③:設出直線方程,聯(lián)立直線與拋物線方程,結合韋達定理,可知焦點坐標的關系,進而可求,從而可判斷出的關系;④:計算直線的斜率之差,可得兩直線斜率相等,進而可判斷三點在同一條直線上.【詳解】解:對于①,設,由拋物線的方程得,則,故,所以或,所以滿足條件的點有二個,故①不正確;對于②,不妨設,則關于準線的對稱點為,故,當且僅當三點共線時等號成立,故②正確;對于③,由題意知,,且的斜率不為0,則設方程為:,設與拋物線的交點坐標為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補,所以,故③正確.對于④,由題意知,由③知,則,由,知,即三點在同一條直線上,故④正確.故選:C.【點睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關系,考查了拋物線的性質,考查了直線方程,考查了兩點的斜率公式.本題的難點在于第二個命題,結合初中的“飲馬問題”分析出何時取最小值.2、D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.3、C【解析】

當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.4、C【解析】

根據等差數列和等比數列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【點睛】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.5、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).6、B【解析】

根據條件可知方程有且只有一個實根等價于函數的圖象與直線只有一個交點,作出圖象,數形結合即可.【詳解】解:因為條件等價于函數的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數圖象與方程零點之間的關系,數形結合是關鍵,屬于基礎題.7、C【解析】

利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據甲同學成績折線圖提供的數據進行統(tǒng)計,估計該同學平均成績在區(qū)間[110,120]內,②正確;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.8、A【解析】

求得的導函數,結合兩點斜率公式和兩直線平行的條件:斜率相等,化簡可得,為任意非零實數.【詳解】依題意,在點處的切線與直線AB平行,即有,所以,由于對任意上式都成立,可得,為非零實數.故選:A【點睛】本題考查導數的運用,求切線的斜率,考查兩點的斜率公式,以及化簡運算能力,屬于中檔題.9、D【解析】

利用函數的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.10、B【解析】

根據二項分布的性質可得:,再根據和二次函數的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數的性質可得:,在上單調遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數的性質的應用,還考查了理解辨析的能力,屬于中檔題.11、C【解析】

由雙曲線的幾何性質與函數的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的概念,考查了分類討論的數學思想.12、B【解析】

畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結合等差數列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.14、1【解析】

令,結合函數的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數分別是上的奇函數和偶函數,且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數奇偶性的應用,其中解答中熟記函數的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】

先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.16、【解析】

求出專業(yè)人數在、、、四個專業(yè)總人數的比例后可得.【詳解】由題意、、、四個不同的專業(yè)人數的比例為,故專業(yè)應抽取的人數為.故答案為:1.【點睛】本題考查分層抽樣,根據分層抽樣的定義,在各層抽取樣本數量是按比例抽取的.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】

(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.18、(1)(2)(3)【解析】試題分析:(1);(2)由橢圓對稱性,知,所以,此時直線方程為,故.(3)設,則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對稱性,知,所以,此時直線方程為,由,得,解得(舍去),故.(3)設,則,直線的方程為,代入橢圓方程,得,因為是該方程的一個解,所以點的橫坐標,又在直線上,所以,同理,點坐標為,,所以,即存在,使得.19、(1)詳見解析;(2)詳見解析.【解析】

(1)利用求導數,判斷在區(qū)間上的單調性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數只需時,恒成立,設(),需,根據(1)中的結論先求出,再構造函數結合導數法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數,則,所以在區(qū)間上是增函數.又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調遞減,在區(qū)間上單調遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數,所以,故.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、函數的零點、極值最值、不等式的證明,分離參數是解題的關鍵,意在考查邏輯推理、數學計算能力,屬于較難題.20、(1)(2)見證明【解析】

(1)由題意將遞推關系式整理為關于與的關系式,求得前n項和然后確定通項公式即可;(2)由題意結合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數列是以為首項,以為公差的等差數列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關系,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論