新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題06 橢圓中的定點(diǎn)、定值、定直線問題(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題06 橢圓中的定點(diǎn)、定值、定直線問題(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題06 橢圓中的定點(diǎn)、定值、定直線問題(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題06 橢圓中的定點(diǎn)、定值、定直線問題(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題06 橢圓中的定點(diǎn)、定值、定直線問題(解析版)_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題06橢圓中的定點(diǎn)、定值、定直線問題限時(shí):120分鐘滿分:150分一、單選題:本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知橢圓SKIPIF1<0,直線SKIPIF1<0與橢圓交于SKIPIF1<0兩點(diǎn),SKIPIF1<0分別為橢圓的左?右兩個(gè)焦點(diǎn),直線SKIPIF1<0與橢圓交于另一個(gè)點(diǎn)SKIPIF1<0,則直線SKIPIF1<0與SKIPIF1<0的斜率乘積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0直線SKIPIF1<0過原點(diǎn),SKIPIF1<0可設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B.2.已知橢圓C:SKIPIF1<0的上、下頂點(diǎn)分別為A,B,點(diǎn)SKIPIF1<0在橢圓C上,若點(diǎn)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題可知SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,故直線QA:SKIPIF1<0,直線QB:SKIPIF1<0,聯(lián)立兩式,解得SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B3.已知SKIPIF1<0是橢圓SKIPIF1<0上滿足SKIPIF1<0的兩個(gè)動點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn)),則SKIPIF1<0等于(

)A.45 B.9 C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:B4.過橢圓SKIPIF1<0的右焦點(diǎn)F作兩條相互垂直的直線分別交橢圓于A,B,C,D四點(diǎn),則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【解析】由橢圓SKIPIF1<0,得橢圓的右焦點(diǎn)為F(1,0),當(dāng)直線AB的斜率不存在時(shí),AB:x=1,則CD:y=0.此時(shí)|AB|=3,|CD|=4,則SKIPIF1<0=SKIPIF1<0;當(dāng)直線AB的斜率存在時(shí),設(shè)AB:y=k(x﹣1)(k≠0),則CD:y=﹣SKIPIF1<0(x﹣1).又設(shè)點(diǎn)A(x1,y1),B(x2,y2).聯(lián)立方程組SKIPIF1<0,消去y并化簡得(4k2+3)x2﹣8k2x+4k2﹣12=0,∴SKIPIF1<0,∴|AB|=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,由題知,直線CD的斜率為﹣SKIPIF1<0,同理可得|CD|=SKIPIF1<0.∴SKIPIF1<0=SKIPIF1<0為定值.故選D.5.已知SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0、SKIPIF1<0分別是橢圓SKIPIF1<0的左、右頂點(diǎn),SKIPIF1<0是橢圓SKIPIF1<0上不同于SKIPIF1<0、SKIPIF1<0的動點(diǎn),直線SKIPIF1<0、SKIPIF1<0分別與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0、SKIPIF1<0.則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)動點(diǎn)SKIPIF1<0,SKIPIF1<0,由橢圓方程可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,由此可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)閯狱c(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.故選:B.6.雙曲線SKIPIF1<0和橢圓SKIPIF1<0的右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0上第一象限內(nèi)不同于SKIPIF1<0的點(diǎn),若SKIPIF1<0,SKIPIF1<0,則四條直線SKIPIF1<0的斜率之和為(

)A.1 B.0 C.SKIPIF1<0 D.不確定值【解析】設(shè)SKIPIF1<0為原點(diǎn),則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,分別代入雙曲線SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,即SKIPIF1<0.故選:B.7.已知橢圓SKIPIF1<0為橢圓SKIPIF1<0的右頂點(diǎn),直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,則SKIPIF1<0恒過除SKIPIF1<0點(diǎn)以外的定點(diǎn)(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】橢圓SKIPIF1<0為橢圓SKIPIF1<0的右頂點(diǎn),所以SKIPIF1<0,由題意知:若直線SKIPIF1<0的斜率存在,設(shè)直線SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0,聯(lián)立可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,不符合題意,舍去;SKIPIF1<0,所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,符合題意;當(dāng)直線的斜率不存在時(shí),直線為SKIPIF1<0,此時(shí)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0符合題意,故直線SKIPIF1<0恒過除SKIPIF1<0點(diǎn)以外的定點(diǎn)SKIPIF1<0,故選:A.8.設(shè)P為橢圓C:SKIPIF1<0(SKIPIF1<0)上的動點(diǎn),SKIPIF1<0,SKIPIF1<0分別為橢圓C的左、右焦點(diǎn),SKIPIF1<0為SKIPIF1<0的內(nèi)心,則直線SKIPIF1<0與直線SKIPIF1<0的斜率積(

)A.非定值,但存在最大值且為SKIPIF1<0 B.是定值且為SKIPIF1<0C.非定值,且不存在定值 D.是定值且為SKIPIF1<0【解析】如圖所示,連接SKIPIF1<0并延長交SKIPIF1<0軸于SKIPIF1<0,由三角形內(nèi)角平分線定理可知:SKIPIF1<0,所以SKIPIF1<0,因此可得:SKIPIF1<0.設(shè)SKIPIF1<0,因此有:SKIPIF1<0,可得:SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,SKIPIF1<0的坐標(biāo)為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由橢圓的定義可知:SKIPIF1<0,再由三角形內(nèi)角平分線定理可知:SKIPIF1<0,由SKIPIF1<0,因此有:SKIPIF1<0.故選:D二、多選題:本大題共4小題,每個(gè)小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.點(diǎn)SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn)且SKIPIF1<0.點(diǎn)P為橢圓上任意一點(diǎn),SKIPIF1<0的面積的最大值是1,點(diǎn)M的坐標(biāo)為SKIPIF1<0,過點(diǎn)SKIPIF1<0且斜率為k的直線L與橢圓C相交于A,B兩點(diǎn),則下列結(jié)論成立的是(

)A.橢圓的離心率SKIPIF1<0B.SKIPIF1<0的值與k相關(guān)C.SKIPIF1<0的值為常數(shù)SKIPIF1<0D.SKIPIF1<0的值為常數(shù)-1【解析】由已知得SKIPIF1<0,解得SKIPIF1<0,則離心率SKIPIF1<0,A正確;又橢圓方程為SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0且斜率為k的直線L的方程為SKIPIF1<0,與橢圓方程聯(lián)立消去SKIPIF1<0得:SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,C正確.故選:AC.10.如圖,已知橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上異于頂點(diǎn)的一動點(diǎn),圓SKIPIF1<0(圓心為SKIPIF1<0)與SKIPIF1<0的三邊SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別切于點(diǎn)A,B,C,延長SKIPIF1<0交x軸于點(diǎn)D,作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則(

).A.SKIPIF1<0為定值 B.SKIPIF1<0為定值C.SKIPIF1<0為定值 D.SKIPIF1<0為定值【解析】對于A,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由余弦定理可知:SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0由于SKIPIF1<0在SKIPIF1<0上運(yùn)動,所以SKIPIF1<0的值也在隨之變化,從而SKIPIF1<0不是定值,則A錯(cuò)誤;對于B,根據(jù)橢圓的定義,SKIPIF1<0,是定值,B正確;對于C,根據(jù)切線長定理和橢圓的定義,得SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為定值,C正確;對于D,連接SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0為定值,則D正確.故選:BCD11.已知橢圓SKIPIF1<0和SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),若點(diǎn)SKIPIF1<0在SKIPIF1<0上,使得SKIPIF1<0,則下列結(jié)論正確的為(

)A.SKIPIF1<0、SKIPIF1<0的離心率相等 B.SKIPIF1<0C.直線SKIPIF1<0、SKIPIF1<0的斜率之積為定值 D.四邊形SKIPIF1<0的面積為SKIPIF1<0【解析】設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,橢圓SKIPIF1<0、SKIPIF1<0的離心率分別為SKIPIF1<0、SKIPIF1<0.對于A選項(xiàng),SKIPIF1<0,SKIPIF1<0,A對;對于B選項(xiàng),聯(lián)立SKIPIF1<0可得SKIPIF1<0,所以,SKIPIF1<0,由題意可知SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,則點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,所以,SKIPIF1<0,B錯(cuò);對于C選項(xiàng),由B選項(xiàng)可知,橢圓SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由已知可得SKIPIF1<0,兩式作差可得SKIPIF1<0,C對;對于D選項(xiàng),顯然四邊形SKIPIF1<0為平行四邊形,其面積記為SKIPIF1<0,SKIPIF1<0的面積記為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以,直線SKIPIF1<0與SKIPIF1<0軸必有交點(diǎn),不妨設(shè)為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,D對.故選:ACD.12.已知橢圓SKIPIF1<0,點(diǎn)SKIPIF1<0為右焦點(diǎn),直線SKIPIF1<0與橢圓交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與橢圓交于另一點(diǎn)SKIPIF1<0,則(

)A.SKIPIF1<0周長為定值 B.直線SKIPIF1<0與SKIPIF1<0的斜率乘積為定值C.線段SKIPIF1<0的長度存在最小值 D.該橢圓離心率為SKIPIF1<0【解析】該橢圓中SKIPIF1<0,則SKIPIF1<0,所以離心率為SKIPIF1<0,故D正確;設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則在SKIPIF1<0、SKIPIF1<0斜率都存在的前提下有SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0SKIPIF1<0為定值,故B正確;由題意可設(shè)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,消SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以線段SKIPIF1<0的長度存在最小值,故C正確.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與橢圓SKIPIF1<0交于點(diǎn)SKIPIF1<0和SKIPIF1<0,不妨取點(diǎn)SKIPIF1<0為SKIPIF1<0,得直線SKIPIF1<0方程為SKIPIF1<0,求得交點(diǎn)SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0的周長為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),聯(lián)立SKIPIF1<0,解得SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0垂直于SKIPIF1<0軸,此時(shí)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0的周長為SKIPIF1<0,顯然SKIPIF1<0周長不為定值,故A錯(cuò)誤;故選:BCD.三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.已知點(diǎn)SKIPIF1<0為SKIPIF1<0上一動點(diǎn).過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0運(yùn)動時(shí),直線SKIPIF1<0過定點(diǎn),該定點(diǎn)的坐標(biāo)是.【解析】設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0,則切點(diǎn)弦SKIPIF1<0的方程為SKIPIF1<0,化簡得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,故直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.14.已知點(diǎn)SKIPIF1<0分別為曲線SKIPIF1<0的左、右焦點(diǎn),點(diǎn)P為曲線C與曲線正SKIPIF1<0在第一象限的交點(diǎn),直線l為曲線C在點(diǎn)P處的切線,若點(diǎn)M為SKIPIF1<0的內(nèi)心,直線SKIPIF1<0與直線l交于點(diǎn)N,則,點(diǎn)N的橫坐標(biāo)為.【解析】由題意可得曲線C,曲線E有相同的焦點(diǎn)SKIPIF1<0,且SKIPIF1<0,在SKIPIF1<0中,內(nèi)切圓圓心M,設(shè)各邊的切點(diǎn)分別為A,D,Q(A為雙曲線的右頂點(diǎn),如圖),所以SKIPIF1<0,可得SKIPIF1<0,聯(lián)立SKIPIF1<0消去y可得SKIPIF1<0,設(shè)SKIPIF1<0,且SKIPIF1<0,所以直線l的方程為SKIPIF1<0①,設(shè)SKIPIF1<0的內(nèi)切圓的半徑為r,則由等面積可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0②,由SKIPIF1<0,可得直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0③.聯(lián)立①②③,化簡可得SKIPIF1<0,得SKIPIF1<0.15.已知橢圓C:SKIPIF1<0,A,B分別為其左,右頂點(diǎn),對于橢圓上任意一點(diǎn)P(不包括左、右頂點(diǎn)),直線AP,BP分別交直線l:SKIPIF1<0于點(diǎn)M,N,則以線段MN為直徑的圓所過定點(diǎn)的坐標(biāo)為.【解析】依題意,如下圖所示:設(shè)SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0(定值),而SKIPIF1<0不為定值.設(shè)圓上一點(diǎn)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0取SKIPIF1<0,此時(shí)SKIPIF1<0或13,故以線段MN為直徑的圓過定點(diǎn)SKIPIF1<0,SKIPIF1<0.16.已知橢圓SKIPIF1<0離心率SKIPIF1<0,過橢圓中心的直線交橢圓于SKIPIF1<0兩點(diǎn)(SKIPIF1<0在第一象限),過SKIPIF1<0作SKIPIF1<0軸垂線交橢圓于點(diǎn)SKIPIF1<0,過SKIPIF1<0作直線SKIPIF1<0垂直SKIPIF1<0交橢圓于點(diǎn)SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0.【解析】SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,兩式相減并化簡得SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四、解答題:本大題共6小題,共70分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.17.已知橢圓SKIPIF1<0的右頂點(diǎn)為SKIPIF1<0,上頂點(diǎn)為SKIPIF1<0,左?右焦點(diǎn)分別為SKIPIF1<0為原點(diǎn),且SKIPIF1<0,過點(diǎn)SKIPIF1<0作斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于另一點(diǎn)SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),在SKIPIF1<0軸上是否存在定點(diǎn)SKIPIF1<0,對于任意的SKIPIF1<0都有SKIPIF1<0?若存在,求出定點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請說明理由.【解析】(1)由題意得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.SKIPIF1<0橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0的方程為:SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,若在x軸上存在定點(diǎn)SKIPIF1<0,對于任意的SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以存在定點(diǎn)SKIPIF1<0.18.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,A,B分別是C的右、上頂點(diǎn),且SKIPIF1<0,D是C上一點(diǎn),SKIPIF1<0周長的最大值為8.(1)求C的方程;(2)C的弦SKIPIF1<0過SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0分別交直線SKIPIF1<0于M,N兩點(diǎn),P是線段SKIPIF1<0的中點(diǎn),證明:以SKIPIF1<0為直徑的圓過定點(diǎn).【解析】(1)依題意,SKIPIF1<0,SKIPIF1<0周長SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點(diǎn)共線時(shí)等號成立,故SKIPIF1<0,

所以SKIPIF1<0,所以SKIPIF1<0的方程SKIPIF1<0;(2)設(shè)SKIPIF1<0,直線SKIPIF1<0,代入SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,同得SKIPIF1<0,從而中點(diǎn)SKIPIF1<0,以SKIPIF1<0為直徑的圓為SKIPIF1<0,由對稱性可知,定點(diǎn)必在SKIPIF1<0軸上,令SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以圓過定點(diǎn)SKIPIF1<0.

19.已知橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左、右頂點(diǎn).(1)求橢圓SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0作斜率不為SKIPIF1<0的直線SKIPIF1<0,直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),記直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,求證:SKIPIF1<0為定值;(3)在(2)的條件下,直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,求證:點(diǎn)SKIPIF1<0在定直線上.【解析】(1)依題可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)橹本€SKIPIF1<0過點(diǎn)SKIPIF1<0且斜率不為SKIPIF1<0,所以可設(shè)SKIPIF1<0的方程為SKIPIF1<0,代入橢圓方程SKIPIF1<0得SKIPIF1<0,其判別式SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.兩式相除得SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0分別為橢圓SKIPIF1<0的左、右頂點(diǎn),所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.從而SKIPIF1<0.(3)由(1)知SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,所以直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以點(diǎn)SKIPIF1<0在定直線SKIPIF1<0上.20.已知橢圓SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,兩個(gè)焦點(diǎn)為SKIPIF1<0和SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)直線SKIPIF1<0過點(diǎn)SKIPIF1<0且與橢圓SKIPIF1<0相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0,點(diǎn)SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,點(diǎn)SKIPIF1<0與SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0.(i)求證:SKIPIF1<0為定值,并求出這個(gè)定值;(ii)若SKIPIF1<0,求直線SKIPIF1<0的方程.【解析】(1)因?yàn)闄E圓焦點(diǎn)在SKIPIF1<0軸上,故設(shè)橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.則SKIPIF1<0,解得SKIPIF1<0,∴橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)法一:(i)顯然直線與SKIPIF1<0軸不重合,設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為定值.法二:設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0.(ⅱ)由(ⅰ)得SKIPIF1<0SKIPIF1<0由SKIPIF1<0得:SKIPIF1<0SKIPIF1<0或-4(舍),故SKIPIF1<0滿足SKIPIF1<0,∴SKIPIF1<0.

21.已知橢圓SKIPIF1<0:SKIPIF1<0的短軸長為SKIPIF1<0,離心率為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的動直線SKIPIF1<0與橢圓SKIPIF1<0相交于不同的SKIPIF1<0兩點(diǎn),在線段SKIPIF1<0上取點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,證明:點(diǎn)SKIPIF1<0總在某定直線上.【解析】(1)由題意可知SKIPIF1<0,因?yàn)镾KIPIF1<0,所以解得SKIPIF1<0,SKIPIF1<0.所以所求橢圓的方程為SKIPIF1<0(2)設(shè)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論