2025屆海南省東方市瓊西中學高三第一次模擬考試數學試卷含解析_第1頁
2025屆海南省東方市瓊西中學高三第一次模擬考試數學試卷含解析_第2頁
2025屆海南省東方市瓊西中學高三第一次模擬考試數學試卷含解析_第3頁
2025屆海南省東方市瓊西中學高三第一次模擬考試數學試卷含解析_第4頁
2025屆海南省東方市瓊西中學高三第一次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆海南省東方市瓊西中學高三第一次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.32.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個3.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.44.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.5.復數為純虛數,則()A.i B.﹣2i C.2i D.﹣i6.已知下列命題:①“”的否定是“”;②已知為兩個命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④7.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數據在上的頻率為,則估計樣本在、內的數據個數共有()A. B. C. D.8.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π9.已知與分別為函數與函數的圖象上一點,則線段的最小值為()A. B. C. D.610.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.11.若,則()A. B. C. D.12.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.設為數列的前項和,若,則____14.拋物線上到其焦點的距離為的點的個數為________.15.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.16.已知是定義在上的偶函數,其導函數為.若時,,則不等式的解集是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.19.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.20.(12分)已知函數,.(1)當時,①求函數在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.21.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且22.(10分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.2、C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.3、C【解析】

設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.4、D【解析】

根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.5、B【解析】

復數為純虛數,則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數,∴,解得..故選:.【點睛】本題考查復數的分類,屬于基礎題.6、B【解析】

由命題的否定,復合命題的真假,充分必要條件,四種命題的關系對每個命題進行判斷.【詳解】“”的否定是“”,正確;已知為兩個命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯誤;“若,則且”是假命題,則它的逆否命題為假命題,錯誤.故選:B.【點睛】本題考查命題真假判斷,掌握四種命題的關系,復合命題的真假判斷,充分必要條件等概念是解題基礎.7、B【解析】

計算出樣本在的數據個數,再減去樣本在的數據個數即可得出結果.【詳解】由題意可知,樣本在的數據個數為,樣本在的數據個數為,因此,樣本在、內的數據個數為.故選:B.【點睛】本題考查利用頻數分布表計算頻數,要理解頻數、樣本容量與頻率三者之間的關系,考查計算能力,屬于基礎題.8、C【解析】

兩函數的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.9、C【解析】

利用導數法和兩直線平行性質,將線段的最小值轉化成切點到直線距離.【詳解】已知與分別為函數與函數的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數的幾何意義的應用,以及點到直線的距離公式的應用,考查轉化思想和計算能力.10、A【解析】

先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【點睛】本題主要考查復數的基本運算和幾何意義,屬于基礎題.11、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數關系式的恒等變變換,同角三角函數關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.12、B【解析】

分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),

得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:【點睛】本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.14、【解析】

設拋物線上任意一點的坐標為,根據拋物線的定義求得,并求出對應的,即可得出結果.【詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.15、【解析】

取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據余弦定理計算得到答案?!驹斀狻咳〉闹悬c,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設,則,,所以,化簡得,解得,即.故答案為:.【點睛】本題考查了根據異面直線夾角求長度,意在考查學生的計算能力和空間想象能力.16、【解析】

構造,先利用定義判斷的奇偶性,再利用導數判斷其單調性,轉化為,結合奇偶性,單調性求解不等式即可.【詳解】令,則是上的偶函數,,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數的奇偶性、單調性解不等式,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)取的中點,連.可證得,,于是可得平面,進而可得結論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結,∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設,則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標系.不妨設,則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設平面的一個法向量為,由,得,令,則得.又,設直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點睛】利用向量法求解直線和平面所成角時,關鍵點是恰當建立空間直角坐標系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關系.18、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應用題中所給的條件,有效利用,再者就是注意應用反證法證題的步驟;(2)將式子進行相應的代換,結合不等式的性質證得結果;(3)結合題中的條件,應用反證法求得結果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時,有,與矛盾.則.得證.點睛:該題考查的是有關命題的證明問題,在證題的過程中,注意對題中的條件的等價轉化,注意對式子的等價變形,以及證題的思路,要掌握證明問題的方法,尤其是反證法的證題思路以及證明步驟.19、.【解析】

根據特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎題.20、(1)①見解析,②見解析;(2)見解析【解析】

(1)①把代入函數解析式,求出函數的導函數得到,再求出,利用直線方程的點斜式求函數在點處的切線方程;②令,利用導數研究函數的單調性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數可得當時,在上單調遞減,當,時,在,上單調遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調遞減,進一步得到在上單調遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調遞減,當,時,,在,上單調遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調遞減,又,,.在上單調遞增,.【點睛】本題考查利用導數研究過曲線上某點處的切線方程,考查利用導數研究函數的單調性,考查邏輯思維能力與推理論證能力,屬難題.21、(1)x22+y2【解析】

(1)根據橢圓的幾何性質可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論