




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
課題§2-1導(dǎo)數(shù)的概念教學(xué)目的使學(xué)生理解導(dǎo)數(shù)的定義,掌握導(dǎo)數(shù)的幾何意義,會(huì)求曲線的切線方程與法線方程,了解函數(shù)可導(dǎo)與連續(xù)的關(guān)系。教學(xué)重點(diǎn)1.導(dǎo)數(shù)的定義;2.用導(dǎo)數(shù)的定義求函數(shù)在某點(diǎn)的導(dǎo)數(shù);3.導(dǎo)數(shù)的幾何意義。教學(xué)難點(diǎn)1.導(dǎo)數(shù)的定義;2.函數(shù)可導(dǎo)與連續(xù)的關(guān)系。教學(xué)方法講授法課時(shí)2課型新授課周次班級(jí)星期節(jié)次地點(diǎn)教學(xué)后記:教學(xué)步驟及內(nèi)容:復(fù)習(xí)舊課二、兩個(gè)引例引例1自由落體運(yùn)動(dòng)的瞬時(shí)速度。提問(wèn):1.自由落體運(yùn)動(dòng)的位移公式;2.自由落體運(yùn)動(dòng)的瞬時(shí)速度公式;3.自由落體運(yùn)動(dòng)的瞬時(shí)速度公式的推導(dǎo)過(guò)程(適當(dāng)討論)。由學(xué)生回答可知自由落體運(yùn)動(dòng)的位移公式為SKIPIF1<0,由于物體的位移SKIPIF1<0是隨時(shí)間SKIPIF1<0連續(xù)變化的,因此在很短的時(shí)間間隔SKIPIF1<0內(nèi)(從SKIPIF1<0到SKIPIF1<0)內(nèi),速度變化不大,可以用平均速度SKIPIF1<0作為SKIPIF1<0時(shí)的瞬時(shí)速度SKIPIF1<0的近似值,即SKIPIF1<0SKIPIF1<0SKIPIF1<0=SKIPIF1<0=SKIPIF1<0顯然,SKIPIF1<0越小,SKIPIF1<0與SKIPIF1<0越接近,當(dāng)SKIPIF1<0無(wú)限變小時(shí),平均速度就無(wú)限接近SKIPIF1<0時(shí)的瞬時(shí)速度.由此,令SKIPIF1<0,如果平均速度SKIPIF1<0的極限存在,就把它定義為物體在時(shí)刻SKIPIF1<0的瞬時(shí)速度SKIPIF1<0,即SKIPIF1<0=SKIPIF1<0=SKIPIF1<0總結(jié)規(guī)律:對(duì)于一般的變速直線運(yùn)動(dòng)的瞬時(shí)速度可由以下式子求得:SKIPIF1<0引例2平面曲線的切線斜率提問(wèn):1.什么叫做圓的切線?2.一般的平面曲線的切線怎么定義?(適當(dāng)討論)定義設(shè)點(diǎn)SKIPIF1<0是曲線SKIPIF1<0上的一個(gè)定點(diǎn),在曲線SKIPIF1<0上另取一點(diǎn)SKIPIF1<0,作割線SKIPIF1<0,當(dāng)動(dòng)點(diǎn)SKIPIF1<0沿曲線SKIPIF1<0向點(diǎn)SKIPIF1<0移動(dòng)時(shí),割線SKIPIF1<0繞點(diǎn)SKIPIF1<0旋轉(zhuǎn),設(shè)其極限位置為SKIPIF1<0,則直線SKIPIF1<0稱(chēng)為曲線SKIPIF1<0在點(diǎn)SKIPIF1<0的切線.如右圖所示.設(shè)曲線SKIPIF1<0的方程是SKIPIF1<0,記點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0(SKIPIF1<0可正可負(fù)),SKIPIF1<0平行SKIPIF1<0軸,設(shè)SKIPIF1<0的傾角為SKIPIF1<0,則SKIPIF1<0的斜率為SKIPIF1<0顯然SKIPIF1<0當(dāng)點(diǎn)SKIPIF1<0沿曲線SKIPIF1<0無(wú)限趨近于點(diǎn)SKIPIF1<0時(shí)(這時(shí)SKIPIF1<0,SKIPIF1<0也趨近于SKIPIF1<0的傾角SKIPIF1<0,這時(shí)切線SKIPIF1<0的斜率SKIPIF1<0綜上兩個(gè)引例的結(jié)論可知,雖然這兩個(gè)問(wèn)題所涉及到的背景知識(shí)不同,但是它們可以用相同的方法求得所需結(jié)果,由此引出導(dǎo)數(shù)的定義。三、導(dǎo)數(shù)的定義1.導(dǎo)數(shù)的定義。定義設(shè)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0的某鄰域內(nèi)有定義,當(dāng)自變量SKIPIF1<0在點(diǎn)SKIPIF1<0處有增量SKIPIF1<0(點(diǎn)SKIPIF1<0仍在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)有增量SKIPIF1<0如果極限SKIPIF1<0存在,則稱(chēng)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處可導(dǎo),并稱(chēng)此極限值為函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù).記作SKIPIF1<0,也可記作SKIPIF1<0,SKIPIF1<0或SKIPIF1<0.即SKIPIF1<0=SKIPIF1<0=SKIPIF1<0這時(shí)就稱(chēng)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0的導(dǎo)數(shù)存在,或稱(chēng)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0可導(dǎo);如果極限不存在,則稱(chēng)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0不可導(dǎo)。2.由導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù)。設(shè)函數(shù)SKIPIF1<0,求該函數(shù)在SKIPIF1<0處的導(dǎo)數(shù)的步驟:在SKIPIF1<0處給定SKIPIF1<0求增量SKIPIF1<0算比值SKIPIF1<0取極限SKIPIF1<0例1已知函數(shù)SKIPIF1<0,求SKIPIF1<0。解在SKIPIF1<0處給定SKIPIF1<0(1)求增量SKIPIF1<0(2)算比值SKIPIF1<0(3)取極限SKIPIF1<0SKIPIF1<0因此,SKIPIF1<0=23.幾點(diǎn)說(shuō)明。1)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù)也稱(chēng)為函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處對(duì)自變量的變化率。2)當(dāng)極限SKIPIF1<0與SKIPIF1<0存在時(shí),分別稱(chēng)它們?yōu)镾KIPIF1<0的左導(dǎo)數(shù)與右導(dǎo)數(shù),記為SKIPIF1<0與SKIPIF1<0。且SKIPIF1<0存在當(dāng)且僅當(dāng)SKIPIF1<0與SKIPIF1<0都存在且相等。(利用極限存在的充要條件理解)3)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù)SKIPIF1<0,就是導(dǎo)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的函數(shù)值,即SKIPIF1<0=SKIPIF1<0。(通過(guò)例1中改變SKIPIF1<0值的改變進(jìn)行說(shuō)明)4)如果函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0內(nèi)每一點(diǎn)SKIPIF1<0處可導(dǎo),則稱(chēng)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0內(nèi)可導(dǎo).顯然導(dǎo)數(shù)值SKIPIF1<0也是SKIPIF1<0的函數(shù),我們稱(chēng)它為函數(shù)SKIPIF1<0的導(dǎo)函數(shù),今后在不會(huì)發(fā)生混淆的情況下,也簡(jiǎn)稱(chēng)導(dǎo)數(shù).記作SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0=SKIPIF1<0討論:函數(shù)SKIPIF1<0的導(dǎo)數(shù)是什么?(結(jié)論:SKIPIF1<0)思考:函數(shù)SKIPIF1<0的導(dǎo)數(shù)是什么?(結(jié)論:SKIPIF1<0)拓展:函數(shù)SKIPIF1<0的導(dǎo)數(shù)是什么?(結(jié)論:SKIPIF1<0)5)如果函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0內(nèi)可導(dǎo),且在SKIPIF1<0點(diǎn)右導(dǎo)數(shù)存在,在SKIPIF1<0點(diǎn)右導(dǎo)數(shù)存在,則稱(chēng)函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0,SKIPIF1<0上可導(dǎo)。四、導(dǎo)數(shù)的幾何意義由引例2的分析可知導(dǎo)數(shù)的幾何意義為:函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0表示曲線SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0的切線的斜率。因此有當(dāng)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處可導(dǎo)時(shí),曲線SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0的切線方程為SKIPIF1<0曲線SKIPIF1<0在點(diǎn)SKIPIF1<0,SKIPIF1<0的法線方程為SKIPIF1<0如果SKIPIF1<0在點(diǎn)SKIPIF1<0連續(xù)且導(dǎo)數(shù)為無(wú)窮大,則曲線在點(diǎn)SKIPIF1<0,SKIPIF1<0的切線方程為SKIPIF1<0;法線方程為SKIPIF1<0例2求曲線SKIPIF1<0在點(diǎn)(1,1)處的切線和法線方程。解因?yàn)镾KIPIF1<0,所以SKIPIF1<0.于是曲線SKIPIF1<0在點(diǎn)(1,1)處的切線方程為SKIPIF1<0即SKIPIF1<0曲線SKIPIF1<0在點(diǎn)(1,1)處的法線方程為SKIPIF1<0即SKIPIF1<0五、可導(dǎo)與連續(xù)的關(guān)系定理如果函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處可導(dǎo),則SKIPIF1<0在點(diǎn)SKIPIF1<0處必連續(xù).注:如果函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處連續(xù),SKIPIF1<0在點(diǎn)SKIPIF1<0處未必可導(dǎo)。四、課堂練習(xí):1.用冪函數(shù)的導(dǎo)數(shù)公式求下列函數(shù)的導(dǎo)數(shù):(1)SKIPIF1<0;(2)SKIPIF1<0;2.求下列曲線在指定點(diǎn)處的切線方程:(1)SKIPIF1<0在點(diǎn)(-1,-1)處;五、教學(xué)內(nèi)容小結(jié)主要內(nèi)容:兩個(gè)引例;導(dǎo)數(shù)的定義;導(dǎo)數(shù)的幾何意義;函數(shù)可導(dǎo)與連續(xù)的關(guān)系。重點(diǎn):1.導(dǎo)數(shù)的定義;2.用導(dǎo)數(shù)的定義求函數(shù)在某點(diǎn)的導(dǎo)數(shù);3.導(dǎo)數(shù)的幾何意義。難點(diǎn):1.導(dǎo)數(shù)的定義;2.函數(shù)可導(dǎo)與連續(xù)的關(guān)系。六、課后思考及作業(yè)p314課題§2-2導(dǎo)數(shù)的運(yùn)算教學(xué)目的使學(xué)生熟記與理解導(dǎo)數(shù)的基本公式與四則運(yùn)算求導(dǎo)法則并能熟練應(yīng)用。使學(xué)生掌握復(fù)合函數(shù)的求導(dǎo)法則教學(xué)重點(diǎn)1.導(dǎo)數(shù)的基本公式;2.四則運(yùn)算求導(dǎo)法則;3.復(fù)合函數(shù)的求導(dǎo)法則教學(xué)難點(diǎn)公式的應(yīng)用教學(xué)方法講授法課時(shí)4課型新授課周次班級(jí)星期節(jié)次地點(diǎn)教學(xué)后記:教學(xué)步驟及內(nèi)容:復(fù)習(xí)舊課提問(wèn):1.導(dǎo)數(shù)可以由哪一個(gè)極限式子表示?2.根據(jù)導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù)有哪幾步?3.導(dǎo)函數(shù)與函數(shù)在某點(diǎn)導(dǎo)數(shù)之間有什么關(guān)系?二、新課講解1.羅列導(dǎo)數(shù)基本公式。SKIPIF1<0(SKIPIF1<0為任意常數(shù));SKIPIF1<0(SKIPIF1<0為實(shí)數(shù));SKIPIF1<0,特別:SKIPIF1<0;SKIPIF1<0,特別:SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0SKIPIF1<0*SKIPIF1<0*SKIPIF1<0SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0。注:要求學(xué)生默記約5分鐘。2.分析部分基本公式特征。課堂練習(xí):在下列空格處填上適當(dāng)?shù)暮瘮?shù)使等式成立:1)SKIPIF1<0=;(答案:0)2)SKIPIF1<0=;(答案:1)3)SKIPIF1<0=;(答案:0)(答案:SKIPIF1<0)4)SKIPIF1<0=;2、導(dǎo)數(shù)的四則運(yùn)算法則函數(shù)的和、差、積、商的求導(dǎo)法則設(shè)SKIPIF1<0可導(dǎo),則(1)SKIPIF1<0;(2)SKIPIF1<0(SKIPIF1<0是常數(shù));(3)SKIPIF1<0;(4)SKIPIF1<0推廣有限個(gè)可導(dǎo)函數(shù)代數(shù)和的導(dǎo)數(shù)等于和個(gè)函數(shù)導(dǎo)數(shù)的代數(shù)和,即SKIPIF1<0SKIPIF1<0SKIPIF1<0推論SKIPIF1<0(SKIPIF1<0為常數(shù)).例2已知SKIPIF1<0,求SKIPIF1<0。解SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例3已知SKIPIF1<0,求SKIPIF1<0。解SKIPIF1<0SKIPIF1<0SKIPIF1<0。例4已知SKIPIF1<0,求SKIPIF1<0。解SKIPIF1<0例5求SKIPIF1<0的導(dǎo)數(shù)。解SKIPIF1<0SKIPIF1<0SKIPIF1<0說(shuō)明:四則運(yùn)算的求導(dǎo)法則除了直接應(yīng)用公式外,有時(shí)需要將表達(dá)適當(dāng)變形后再應(yīng)用公式。3、復(fù)合函數(shù)的求導(dǎo)法則設(shè)SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0或SKIPIF1<0例6設(shè)SKIP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京汽車(chē)托運(yùn)合同范本
- 2025年泰州貨運(yùn)從業(yè)資格證怎么考
- 修復(fù)車(chē)交易合同范本
- 醫(yī)院弱電集成合同范本
- 制衣廠勞動(dòng)合同范本
- 主廚合同范本
- 與中介定金合同范本
- 棉花勞務(wù)合同范本
- 冠名使用合同范本
- 勞動(dòng)合同范本完整
- 2020年8月自考00371公安決策學(xué)試題及答案含解析
- 2024年CNCERT-CCSC管理Ⅱ級(jí)理論考試題庫(kù)及答案
- T-CARM 002-2023 康復(fù)醫(yī)院建設(shè)標(biāo)準(zhǔn)
- 《電線電纜介紹》課件
- 汽車(chē)驅(qū)動(dòng)橋橋殼的優(yōu)化設(shè)計(jì)
- 幼兒園活動(dòng)區(qū)自制玩學(xué)具及其效用研究
- 中國(guó)古代史選擇題50題專(zhuān)練 高考?xì)v史統(tǒng)編版二輪復(fù)習(xí)
- 概念階段定義產(chǎn)品包需求指南
- 秸稈的綜合利用課件
- 熊膽粉知識(shí)講座
- 《小兒過(guò)敏性紫癜》課件
評(píng)論
0/150
提交評(píng)論