2015-2024年十年高考數(shù)學(xué)真題分類匯編專題25 新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)_第1頁(yè)
2015-2024年十年高考數(shù)學(xué)真題分類匯編專題25 新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)_第2頁(yè)
2015-2024年十年高考數(shù)學(xué)真題分類匯編專題25 新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)_第3頁(yè)
2015-2024年十年高考數(shù)學(xué)真題分類匯編專題25 新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)_第4頁(yè)
2015-2024年十年高考數(shù)學(xué)真題分類匯編專題25 新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2013-2024年十年高考真題匯編PAGEPAGE1專題25新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)考點(diǎn)十年考情(2015-2024)命題趨勢(shì)考點(diǎn)1數(shù)列新定義(10年10考)2024·全國(guó)新Ⅰ卷、2024·北京卷、2023·北京卷2022·北京卷、2021·全國(guó)新Ⅱ卷、2021·北京卷2020·全國(guó)新Ⅱ卷、2020·北京卷2020·江蘇卷2019·江蘇卷、2018·江蘇卷、2017·北京卷2017·江蘇卷、2016·江蘇卷、2016·北京卷2016·上海卷、2016·上海卷、2015·北京卷新高考數(shù)學(xué)新結(jié)構(gòu)體系下,新定義類試題更綜合性的考查學(xué)生的思維能力和推理能力;以問(wèn)題為抓手,創(chuàng)新設(shè)問(wèn)方式,搭建思維平臺(tái),引導(dǎo)考生思考,在思維過(guò)程中領(lǐng)悟數(shù)學(xué)方法。題目更加注重綜合性、應(yīng)用性、創(chuàng)新性,本題分值最高,試題容量明顯增大,對(duì)學(xué)科核心素養(yǎng)的考查也更深入。壓軸題命題打破了試題題型、命題方式、試卷結(jié)構(gòu)的固有模式,增強(qiáng)試題的靈活性,采取多樣的形式多角度的提問(wèn),考查學(xué)生的數(shù)學(xué)能力,新定義題型的特點(diǎn)是;通過(guò)給出一個(gè)新概念,或約定一種新運(yùn)算,或給出幾個(gè)新模型來(lái)創(chuàng)設(shè)全新的問(wèn)題情景,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識(shí)和方法,實(shí)現(xiàn)信息的遷移達(dá)到靈活解題的目的;遇到新定義問(wèn)題,應(yīng)耐心讀題,分析新定義的特點(diǎn),弄清新定義的性質(zhì),按新定義照章辦事”逐條分析、驗(yàn)證、運(yùn)算,使問(wèn)題得以解決,難度較難,需重點(diǎn)特訓(xùn)。考點(diǎn)2函數(shù)新定義(10年4考)2024·上海、2020·江蘇、2018·江蘇2015·湖北、2015·福建考點(diǎn)3集合新定義(10年3考)2020·浙江卷、2018·北京卷2015·山東卷、2015·浙江卷考點(diǎn)4其他新定義(10年2考)2020·北京卷、2016·四川卷考點(diǎn)01數(shù)列新定義小題1.(2021·全國(guó)新Ⅱ卷·高考真題)(多選)設(shè)正整數(shù),其中,記.則(

)A. B.C. D.2.(2020·全國(guó)新Ⅱ卷·高考真題)0-1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列滿足,且存在正整數(shù),使得成立,則稱其為0-1周期序列,并稱滿足的最小正整數(shù)為這個(gè)序列的周期.對(duì)于周期為的0-1序列,是描述其性質(zhì)的重要指標(biāo),下列周期為5的0-1序列中,滿足的序列是(

)A. B. C. D.大題1.(2024·全國(guó)新Ⅰ卷·高考真題)設(shè)m為正整數(shù),數(shù)列是公差不為0的等差數(shù)列,若從中刪去兩項(xiàng)和后剩余的項(xiàng)可被平均分為組,且每組的4個(gè)數(shù)都能構(gòu)成等差數(shù)列,則稱數(shù)列是可分?jǐn)?shù)列.(1)寫出所有的,,使數(shù)列是可分?jǐn)?shù)列;(2)當(dāng)時(shí),證明:數(shù)列是可分?jǐn)?shù)列;(3)從中一次任取兩個(gè)數(shù)和,記數(shù)列是可分?jǐn)?shù)列的概率為,證明:.2.(2024·北京·高考真題)已知集合.給定數(shù)列,和序列,其中,對(duì)數(shù)列進(jìn)行如下變換:將的第項(xiàng)均加1,其余項(xiàng)不變,得到的數(shù)列記作;將的第項(xiàng)均加1,其余項(xiàng)不變,得到數(shù)列記作;……;以此類推,得到,簡(jiǎn)記為.(1)給定數(shù)列和序列,寫出;(2)是否存在序列,使得為,若存在,寫出一個(gè)符合條件的;若不存在,請(qǐng)說(shuō)明理由;(3)若數(shù)列的各項(xiàng)均為正整數(shù),且為偶數(shù),求證:“存在序列,使得的各項(xiàng)都相等”的充要條件為“”.3.(2023·北京·高考真題)已知數(shù)列的項(xiàng)數(shù)均為m,且的前n項(xiàng)和分別為,并規(guī)定.對(duì)于,定義,其中,表示數(shù)集M中最大的數(shù).(1)若,求的值;(2)若,且,求;(3)證明:存在,滿足使得.4.(2022·北京·高考真題)已知為有窮整數(shù)數(shù)列.給定正整數(shù)m,若對(duì)任意的,在Q中存在,使得,則稱Q為連續(xù)可表數(shù)列.(1)判斷是否為連續(xù)可表數(shù)列?是否為連續(xù)可表數(shù)列?說(shuō)明理由;(2)若為連續(xù)可表數(shù)列,求證:k的最小值為4;(3)若為連續(xù)可表數(shù)列,且,求證:.5.(2021·北京·高考真題)設(shè)p為實(shí)數(shù).若無(wú)窮數(shù)列滿足如下三個(gè)性質(zhì),則稱為數(shù)列:①,且;②;③,.(1)如果數(shù)列的前4項(xiàng)為2,-2,-2,-1,那么是否可能為數(shù)列?說(shuō)明理由;(2)若數(shù)列是數(shù)列,求;(3)設(shè)數(shù)列的前項(xiàng)和為.是否存在數(shù)列,使得恒成立?如果存在,求出所有的p;如果不存在,說(shuō)明理由.6.(2020·北京·高考真題)已知是無(wú)窮數(shù)列.給出兩個(gè)性質(zhì):①對(duì)于中任意兩項(xiàng),在中都存在一項(xiàng),使;②對(duì)于中任意項(xiàng),在中都存在兩項(xiàng).使得.(Ⅰ)若,判斷數(shù)列是否滿足性質(zhì)①,說(shuō)明理由;(Ⅱ)若,判斷數(shù)列是否同時(shí)滿足性質(zhì)①和性質(zhì)②,說(shuō)明理由;(Ⅲ)若是遞增數(shù)列,且同時(shí)滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.7.(2020·江蘇·高考真題)已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λ與k是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k”數(shù)列.(1)若等差數(shù)列是“λ~1”數(shù)列,求λ的值;(2)若數(shù)列是“”數(shù)列,且an>0,求數(shù)列的通項(xiàng)公式;(3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列為“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,8.(2019·江蘇·高考真題)定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.①求數(shù)列{bn}的通項(xiàng)公式;②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.9.(2018·江蘇·高考真題)設(shè),對(duì)1,2,···,n的一個(gè)排列,如果當(dāng)s<t時(shí),有,則稱是排列的一個(gè)逆序,排列的所有逆序的總個(gè)數(shù)稱為其逆序數(shù).例如:對(duì)1,2,3的一個(gè)排列231,只有兩個(gè)逆序(2,1),(3,1),則排列231的逆序數(shù)為2.記為1,2,···,n的所有排列中逆序數(shù)為k的全部排列的個(gè)數(shù).(1)求的值;(2)求的表達(dá)式(用n表示).10.(2017·北京·高考真題)設(shè)和是兩個(gè)等差數(shù)列,記,其中表示這個(gè)數(shù)中最大的數(shù).(Ⅰ)若,,求的值,并證明是等差數(shù)列;(Ⅱ)證明:或者對(duì)任意正數(shù),存在正整數(shù),當(dāng)時(shí),;或者存在正整數(shù),使得是等差數(shù)列.11.(2017·江蘇·高考真題)對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足對(duì)任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;(2)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.12.(2016·江蘇·高考真題)記.對(duì)數(shù)列和的子集,若,定義;若,定義.例如:時(shí),.現(xiàn)設(shè)是公比為3的等比數(shù)列,且當(dāng)時(shí),.(1)求數(shù)列的通項(xiàng)公式;(2)對(duì)任意正整數(shù),若,求證:;(3)設(shè),求證:.13.(2016·北京·高考真題)設(shè)數(shù)列A:,,…().如果對(duì)小于()的每個(gè)正整數(shù)都有<,則稱是數(shù)列A的一個(gè)“G時(shí)刻”.記“是數(shù)列A的所有“G時(shí)刻”組成的集合.(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫出的所有元素;(2)證明:若數(shù)列A中存在使得>,則;(3)證明:若數(shù)列A滿足-≤1(n=2,3,…,N),則的元素個(gè)數(shù)不小于-.14.(2016·上海·高考真題)若無(wú)窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).(1)若具有性質(zhì),且,,求;(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,判斷是否具有性質(zhì),并說(shuō)明理由;(3)設(shè)是無(wú)窮數(shù)列,已知.求證:“對(duì)任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.15.(2016·上?!じ呖颊骖})對(duì)于無(wú)窮數(shù)列{}與{},記A={|=,},B={|=,},若同時(shí)滿足條件:①{},{}均單調(diào)遞增;②且,則稱{}與{}是無(wú)窮互補(bǔ)數(shù)列.(1)若=,=,判斷{}與{}是否為無(wú)窮互補(bǔ)數(shù)列,并說(shuō)明理由;(2)若=且{}與{}是無(wú)窮互補(bǔ)數(shù)列,求數(shù)列{}的前16項(xiàng)的和;(3)若{}與{}是無(wú)窮互補(bǔ)數(shù)列,{}為等差數(shù)列且=36,求{}與{}得通項(xiàng)公式.16.(2015·北京·高考真題)已知數(shù)列滿足:,,且.記集合.(Ⅰ)若,寫出集合的所有元素;(Ⅱ)若集合存在一個(gè)元素是3的倍數(shù),證明:的所有元素都是3的倍數(shù);(Ⅲ)求集合的元素個(gè)數(shù)的最大值.考點(diǎn)02函數(shù)新定義小題1.(2015·湖北·高考真題)已知符號(hào)函數(shù)是上的增函數(shù),,則A. B.C. D.2.(2015·福建·高考真題)一個(gè)二元碼是由0和1組成的數(shù)字串,其中稱為第位碼元,二元碼是通信中常用的碼,但在通信過(guò)程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?,或者由1變?yōu)?)已知某種二元碼的碼元滿足如下校驗(yàn)方程組:其中運(yùn)算定義為:.現(xiàn)已知一個(gè)這種二元碼在通信過(guò)程中僅在第位發(fā)生碼元錯(cuò)誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定等于.大題1.(2024·上海·高考真題)對(duì)于一個(gè)函數(shù)和一個(gè)點(diǎn),令,若是取到最小值的點(diǎn),則稱是在的“最近點(diǎn)”.(1)對(duì)于,求證:對(duì)于點(diǎn),存在點(diǎn),使得點(diǎn)是在的“最近點(diǎn)”;(2)對(duì)于,請(qǐng)判斷是否存在一個(gè)點(diǎn),它是在的“最近點(diǎn)”,且直線與在點(diǎn)處的切線垂直;(3)已知在定義域R上存在導(dǎo)函數(shù),且函數(shù)在定義域R上恒正,設(shè)點(diǎn),.若對(duì)任意的,存在點(diǎn)同時(shí)是在的“最近點(diǎn)”,試判斷的單調(diào)性.2.(2020·江蘇·高考真題)已知關(guān)于x的函數(shù)與在區(qū)間D上恒有.(1)若,求h(x)的表達(dá)式;(2)若,求k的取值范圍;(3)若求證:.3.(2018·江蘇·高考真題)記分別為函數(shù)的導(dǎo)函數(shù).若存在,滿足且,則稱為函數(shù)與的一個(gè)“點(diǎn)”.(1)證明:函數(shù)與不存在“點(diǎn)”;(2)若函數(shù)與存在“點(diǎn)”,求實(shí)數(shù)的值;(3)已知函數(shù),.對(duì)任意,判斷是否存在,使函數(shù)與在區(qū)間內(nèi)存在“點(diǎn)”,并說(shuō)明理由.考點(diǎn)03集合新定義小題1.(2020·浙江·高考真題)設(shè)集合S,T,SN*,TN*,S,T中至少有兩個(gè)元素,且S,T滿足:①對(duì)于任意x,yS,若x≠y,都有xyT②對(duì)于任意x,yT,若x<y,則S;下列命題正確的是(

)A.若S有4個(gè)元素,則S∪T有7個(gè)元素B.若S有4個(gè)元素,則S∪T有6個(gè)元素C.若S有3個(gè)元素,則S∪T有5個(gè)元素D.若S有3個(gè)元素,則S∪T有4個(gè)元素2.(2015·山東·高考真題)集合,,都是非空集合,現(xiàn)規(guī)定如下運(yùn)算:且.假設(shè)集合,,,其中實(shí)數(shù),,,,,滿足:(1),;;(2);(3).計(jì)算.3.(2015·浙江·高考真題)設(shè),是有限集,定義,其中表示有限集A中的元素個(gè)數(shù),命題①:對(duì)任意有限集,,“”是“”的充分必要條件;命題②:對(duì)任意有限集,,,,A.命題①和命題②都成立B.命題①和命題②都不成立C.命題①成立,命題②不成立D.命題①不成立,命題②成立4.(2015·湖北·高考真題)已知集合,,定義集合,則中元素的個(gè)數(shù)為A.77 B.49 C.45 D.30大題1.(2018·北京·高考真題)設(shè)n為正整數(shù),集合A=.對(duì)于集合A中的任意元素和,記M()=.(Ⅰ)當(dāng)n=3時(shí),若,,求M()和M()的值;(Ⅱ)當(dāng)n=4時(shí),設(shè)B是A的子集,且滿足:對(duì)于B中的任意元素,當(dāng)相同時(shí),M()是奇數(shù);當(dāng)不同時(shí),M()是偶數(shù).求集合B中元素個(gè)數(shù)的最大值;(Ⅲ)給定不小于2的n,設(shè)B是A的子集,且滿足:對(duì)于B中的任意兩個(gè)不同的元素,M()=0.寫出一個(gè)集合B,使其元素個(gè)數(shù)最多,并說(shuō)明理由.考點(diǎn)04其他新定義1.(2020·北京·高考真題)2020年3月14日是全球首個(gè)國(guó)際圓周率日(Day).歷史上,求圓周率的方法有多種,與中國(guó)傳統(tǒng)數(shù)學(xué)中的“割圓術(shù)”相似.?dāng)?shù)學(xué)家阿爾·卡西的方法是:當(dāng)正整數(shù)充分大時(shí),計(jì)算單位圓的內(nèi)接正邊形的周長(zhǎng)和外切正邊形(各邊均與圓相切的正邊形)的周長(zhǎng),將它們的算術(shù)平均數(shù)作為的近似值.按照阿爾·卡西的方法,的近似值的表達(dá)式是(

).A. B.C. D.2.(2016·四川·高考真題)在平面直角坐標(biāo)系中,當(dāng)不是原點(diǎn)時(shí),定義的“伴隨點(diǎn)”為,當(dāng)P是原點(diǎn)時(shí),定義“伴隨點(diǎn)”為它自身,現(xiàn)有下列命題:①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn),則點(diǎn)的“伴隨點(diǎn)”是點(diǎn).②單元圓上的“伴隨點(diǎn)”還在單位圓上.③若兩點(diǎn)關(guān)于x軸對(duì)稱,則他們的“伴隨點(diǎn)”關(guān)于y軸對(duì)稱④若三點(diǎn)在同一條直線上,則他們的“伴隨點(diǎn)”一定共線.其中的真命題是.專題25新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)考點(diǎn)十年考情(2015-2024)命題趨勢(shì)考點(diǎn)1數(shù)列新定義(10年10考)2024·全國(guó)新Ⅰ卷、2024·北京卷、2023·北京卷2022·北京卷、2021·全國(guó)新Ⅱ卷、2021·北京卷2020·全國(guó)新Ⅱ卷、2020·北京卷2020·江蘇卷2019·江蘇卷、2018·江蘇卷、2017·北京卷2017·江蘇卷、2016·江蘇卷、2016·北京卷2016·上海卷、2016·上海卷、2015·北京卷新高考數(shù)學(xué)新結(jié)構(gòu)體系下,新定義類試題更綜合性的考查學(xué)生的思維能力和推理能力;以問(wèn)題為抓手,創(chuàng)新設(shè)問(wèn)方式,搭建思維平臺(tái),引導(dǎo)考生思考,在思維過(guò)程中領(lǐng)悟數(shù)學(xué)方法。題目更加注重綜合性、應(yīng)用性、創(chuàng)新性,本題分值最高,試題容量明顯增大,對(duì)學(xué)科核心素養(yǎng)的考查也更深入。壓軸題命題打破了試題題型、命題方式、試卷結(jié)構(gòu)的固有模式,增強(qiáng)試題的靈活性,采取多樣的形式多角度的提問(wèn),考查學(xué)生的數(shù)學(xué)能力,新定義題型的特點(diǎn)是;通過(guò)給出一個(gè)新概念,或約定一種新運(yùn)算,或給出幾個(gè)新模型來(lái)創(chuàng)設(shè)全新的問(wèn)題情景,要求考生在閱讀理解的基礎(chǔ)上,依據(jù)題目提供的信息,聯(lián)系所學(xué)的知識(shí)和方法,實(shí)現(xiàn)信息的遷移達(dá)到靈活解題的目的;遇到新定義問(wèn)題,應(yīng)耐心讀題,分析新定義的特點(diǎn),弄清新定義的性質(zhì),按新定義照章辦事”逐條分析、驗(yàn)證、運(yùn)算,使問(wèn)題得以解決,難度較難,需重點(diǎn)特訓(xùn)。考點(diǎn)2函數(shù)新定義(10年4考)2024·上海、2020·江蘇、2018·江蘇2015·湖北、2015·福建考點(diǎn)3集合新定義(10年3考)2020·浙江卷、2018·北京卷2015·山東卷、2015·浙江卷考點(diǎn)4其他新定義(10年2考)2020·北京卷、2016·四川卷考點(diǎn)01數(shù)列新定義小題1.(2021·全國(guó)新Ⅱ卷·高考真題)(多選)設(shè)正整數(shù),其中,記.則(

)A. B.C. D.2.(2020·全國(guó)新Ⅱ卷·高考真題)0-1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列滿足,且存在正整數(shù),使得成立,則稱其為0-1周期序列,并稱滿足的最小正整數(shù)為這個(gè)序列的周期.對(duì)于周期為的0-1序列,是描述其性質(zhì)的重要指標(biāo),下列周期為5的0-1序列中,滿足的序列是(

)A. B. C. D.大題1.(2024·全國(guó)新Ⅰ卷·高考真題)設(shè)m為正整數(shù),數(shù)列是公差不為0的等差數(shù)列,若從中刪去兩項(xiàng)和后剩余的項(xiàng)可被平均分為組,且每組的4個(gè)數(shù)都能構(gòu)成等差數(shù)列,則稱數(shù)列是可分?jǐn)?shù)列.(1)寫出所有的,,使數(shù)列是可分?jǐn)?shù)列;(2)當(dāng)時(shí),證明:數(shù)列是可分?jǐn)?shù)列;(3)從中一次任取兩個(gè)數(shù)和,記數(shù)列是可分?jǐn)?shù)列的概率為,證明:.2.(2024·北京·高考真題)已知集合.給定數(shù)列,和序列,其中,對(duì)數(shù)列進(jìn)行如下變換:將的第項(xiàng)均加1,其余項(xiàng)不變,得到的數(shù)列記作;將的第項(xiàng)均加1,其余項(xiàng)不變,得到數(shù)列記作;……;以此類推,得到,簡(jiǎn)記為.(1)給定數(shù)列和序列,寫出;(2)是否存在序列,使得為,若存在,寫出一個(gè)符合條件的;若不存在,請(qǐng)說(shuō)明理由;(3)若數(shù)列的各項(xiàng)均為正整數(shù),且為偶數(shù),求證:“存在序列,使得的各項(xiàng)都相等”的充要條件為“”.3.(2023·北京·高考真題)已知數(shù)列的項(xiàng)數(shù)均為m,且的前n項(xiàng)和分別為,并規(guī)定.對(duì)于,定義,其中,表示數(shù)集M中最大的數(shù).(1)若,求的值;(2)若,且,求;(3)證明:存在,滿足使得.4.(2022·北京·高考真題)已知為有窮整數(shù)數(shù)列.給定正整數(shù)m,若對(duì)任意的,在Q中存在,使得,則稱Q為連續(xù)可表數(shù)列.(1)判斷是否為連續(xù)可表數(shù)列?是否為連續(xù)可表數(shù)列?說(shuō)明理由;(2)若為連續(xù)可表數(shù)列,求證:k的最小值為4;(3)若為連續(xù)可表數(shù)列,且,求證:.5.(2021·北京·高考真題)設(shè)p為實(shí)數(shù).若無(wú)窮數(shù)列滿足如下三個(gè)性質(zhì),則稱為數(shù)列:①,且;②;③,.(1)如果數(shù)列的前4項(xiàng)為2,-2,-2,-1,那么是否可能為數(shù)列?說(shuō)明理由;(2)若數(shù)列是數(shù)列,求;(3)設(shè)數(shù)列的前項(xiàng)和為.是否存在數(shù)列,使得恒成立?如果存在,求出所有的p;如果不存在,說(shuō)明理由.6.(2020·北京·高考真題)已知是無(wú)窮數(shù)列.給出兩個(gè)性質(zhì):①對(duì)于中任意兩項(xiàng),在中都存在一項(xiàng),使;②對(duì)于中任意項(xiàng),在中都存在兩項(xiàng).使得.(Ⅰ)若,判斷數(shù)列是否滿足性質(zhì)①,說(shuō)明理由;(Ⅱ)若,判斷數(shù)列是否同時(shí)滿足性質(zhì)①和性質(zhì)②,說(shuō)明理由;(Ⅲ)若是遞增數(shù)列,且同時(shí)滿足性質(zhì)①和性質(zhì)②,證明:為等比數(shù)列.7.(2020·江蘇·高考真題)已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λ與k是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k”數(shù)列.(1)若等差數(shù)列是“λ~1”數(shù)列,求λ的值;(2)若數(shù)列是“”數(shù)列,且an>0,求數(shù)列的通項(xiàng)公式;(3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列為“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,8.(2019·江蘇·高考真題)定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.①求數(shù)列{bn}的通項(xiàng)公式;②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.9.(2018·江蘇·高考真題)設(shè),對(duì)1,2,···,n的一個(gè)排列,如果當(dāng)s<t時(shí),有,則稱是排列的一個(gè)逆序,排列的所有逆序的總個(gè)數(shù)稱為其逆序數(shù).例如:對(duì)1,2,3的一個(gè)排列231,只有兩個(gè)逆序(2,1),(3,1),則排列231的逆序數(shù)為2.記為1,2,···,n的所有排列中逆序數(shù)為k的全部排列的個(gè)數(shù).(1)求的值;(2)求的表達(dá)式(用n表示).10.(2017·北京·高考真題)設(shè)和是兩個(gè)等差數(shù)列,記,其中表示這個(gè)數(shù)中最大的數(shù).(Ⅰ)若,,求的值,并證明是等差數(shù)列;(Ⅱ)證明:或者對(duì)任意正數(shù),存在正整數(shù),當(dāng)時(shí),;或者存在正整數(shù),使得是等差數(shù)列.11.(2017·江蘇·高考真題)對(duì)于給定的正整數(shù)k,若數(shù)列{an}滿足對(duì)任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”.(1)證明:等差數(shù)列{an}是“P(3)數(shù)列”;(2)若數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列.12.(2016·江蘇·高考真題)記.對(duì)數(shù)列和的子集,若,定義;若,定義.例如:時(shí),.現(xiàn)設(shè)是公比為3的等比數(shù)列,且當(dāng)時(shí),.(1)求數(shù)列的通項(xiàng)公式;(2)對(duì)任意正整數(shù),若,求證:;(3)設(shè),求證:.13.(2016·北京·高考真題)設(shè)數(shù)列A:,,…().如果對(duì)小于()的每個(gè)正整數(shù)都有<,則稱是數(shù)列A的一個(gè)“G時(shí)刻”.記“是數(shù)列A的所有“G時(shí)刻”組成的集合.(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫出的所有元素;(2)證明:若數(shù)列A中存在使得>,則;(3)證明:若數(shù)列A滿足-≤1(n=2,3,…,N),則的元素個(gè)數(shù)不小于-.14.(2016·上海·高考真題)若無(wú)窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).(1)若具有性質(zhì),且,,求;(2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,判斷是否具有性質(zhì),并說(shuō)明理由;(3)設(shè)是無(wú)窮數(shù)列,已知.求證:“對(duì)任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.15.(2016·上?!じ呖颊骖})對(duì)于無(wú)窮數(shù)列{}與{},記A={|=,},B={|=,},若同時(shí)滿足條件:①{},{}均單調(diào)遞增;②且,則稱{}與{}是無(wú)窮互補(bǔ)數(shù)列.(1)若=,=,判斷{}與{}是否為無(wú)窮互補(bǔ)數(shù)列,并說(shuō)明理由;(2)若=且{}與{}是無(wú)窮互補(bǔ)數(shù)列,求數(shù)列{}的前16項(xiàng)的和;(3)若{}與{}是無(wú)窮互補(bǔ)數(shù)列,{}為等差數(shù)列且=36,求{}與{}得通項(xiàng)公式.16.(2015·北京·高考真題)已知數(shù)列滿足:,,且.記集合.(Ⅰ)若,寫出集合的所有元素;(Ⅱ)若集合存在一個(gè)元素是3的倍數(shù),證明:的所有元素都是3的倍數(shù);(Ⅲ)求集合的元素個(gè)數(shù)的最大值.考點(diǎn)02函數(shù)新定義小題1.(2015·湖北·高考真題)已知符號(hào)函數(shù)是上的增函數(shù),,則A. B.C. D.2.(2015·福建·高考真題)一個(gè)二元碼是由0和1組成的數(shù)字串,其中稱為第位碼元,二元碼是通信中常用的碼,但在通信過(guò)程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?,或者由1變?yōu)?)已知某種二元碼的碼元滿足如下校驗(yàn)方程組:其中運(yùn)算定義為:.現(xiàn)已知一個(gè)這種二元碼在通信過(guò)程中僅在第位發(fā)生碼元錯(cuò)誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定等于.大題1.(2024·上?!じ呖颊骖})對(duì)于一個(gè)函數(shù)和一個(gè)點(diǎn),令,若是取到最小值的點(diǎn),則稱是在的“最近點(diǎn)”.(1)對(duì)于,求證:對(duì)于點(diǎn),存在點(diǎn),使得點(diǎn)是在的“最近點(diǎn)”;(2)對(duì)于,請(qǐng)判斷是否存在一個(gè)點(diǎn),它是在的“最近點(diǎn)”,且直線與在點(diǎn)處的切線垂直;(3)已知在定義域R上存在導(dǎo)函數(shù),且函數(shù)在定義域R上恒正,設(shè)點(diǎn),.若對(duì)任意的,存在點(diǎn)同時(shí)是在的“最近點(diǎn)”,試判斷的單調(diào)性.2.(2020·江蘇·高考真題)已知關(guān)于x的函數(shù)與在區(qū)間D上恒有.(1)若,求h(x)的表達(dá)式;(2)若,求k的取值范圍;(3)若求證:.3.(2018·江蘇·高考真題)記分別為函數(shù)的導(dǎo)函數(shù).若存在,滿足且,則稱為函數(shù)與的一個(gè)“點(diǎn)”.(1)證明:函數(shù)與不存在“點(diǎn)”;(2)若函數(shù)與存在“點(diǎn)”,求實(shí)數(shù)的值;(3)已知函數(shù),.對(duì)任意,判斷是否存在,使函數(shù)與在區(qū)間內(nèi)存在“點(diǎn)”,并說(shuō)明理由.考點(diǎn)03集合新定義小題1.(2020·浙江·高考真題)設(shè)集合S,T,SN*,TN*,S,T中至少有兩個(gè)元素,且S,T滿足:①對(duì)于任意x,yS,若

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論