武漢設(shè)計(jì)工程學(xué)院《展示設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
武漢設(shè)計(jì)工程學(xué)院《展示設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
武漢設(shè)計(jì)工程學(xué)院《展示設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
武漢設(shè)計(jì)工程學(xué)院《展示設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
武漢設(shè)計(jì)工程學(xué)院《展示設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)武漢設(shè)計(jì)工程學(xué)院

《展示設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺(jué)跟蹤方法能夠提供較好的長(zhǎng)期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法2、在計(jì)算機(jī)視覺(jué)的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點(diǎn)的圖像進(jìn)行融合,以下關(guān)于圖像融合方法的描述,哪一項(xiàng)是不正確的?()A.可以基于像素級(jí)的融合策略,將兩幅圖像的像素值進(jìn)行加權(quán)或組合B.特征級(jí)融合方法先提取圖像的特征,然后進(jìn)行融合,能夠更好地保留圖像的語(yǔ)義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無(wú)關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點(diǎn)和互補(bǔ)性,以獲得更理想的融合結(jié)果3、計(jì)算機(jī)視覺(jué)中的行人重識(shí)別是指在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人。假設(shè)要在一個(gè)大型商場(chǎng)的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識(shí)別,以下關(guān)于行人重識(shí)別方法的描述,正確的是:()A.基于顏色和紋理特征的方法對(duì)行人的姿態(tài)和光照變化不敏感,識(shí)別準(zhǔn)確率高B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法能夠?qū)W習(xí)到行人的判別性特征,但容易受到背景干擾C.行人重識(shí)別系統(tǒng)只需要關(guān)注行人的外觀特征,不需要考慮行人的行為特征D.行人重識(shí)別在不同場(chǎng)景和攝像頭視角下的性能始終保持穩(wěn)定,不受影響4、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一個(gè)商場(chǎng)需要通過(guò)監(jiān)控?cái)z像頭進(jìn)行人員異常行為檢測(cè)。以下關(guān)于安防監(jiān)控中的計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)監(jiān)測(cè)人群的流動(dòng)情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識(shí)別人員的打斗、摔倒等異常行為,并及時(shí)發(fā)出警報(bào)C.計(jì)算機(jī)視覺(jué)系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類保安的參與D.可以與其他安防設(shè)備(如門禁系統(tǒng))聯(lián)動(dòng),提高安防水平5、在計(jì)算機(jī)視覺(jué)的圖像風(fēng)格遷移任務(wù)中,假設(shè)要將一張照片轉(zhuǎn)換為具有特定藝術(shù)風(fēng)格的圖像,以下哪種技術(shù)可能對(duì)生成逼真的風(fēng)格效果起到關(guān)鍵作用?()A.對(duì)抗生成網(wǎng)絡(luò)(GAN)B.自編碼器(Autoencoder)C.變分自編碼器(VAE)D.玻爾茲曼機(jī)(BoltzmannMachine)6、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開(kāi)發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)7、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺(jué)中的重要任務(wù)之一,旨在定位和識(shí)別圖像中的多個(gè)目標(biāo)。假設(shè)我們要在城市街道的圖像中檢測(cè)行人和車輛。對(duì)于處理這種復(fù)雜場(chǎng)景的目標(biāo)檢測(cè)任務(wù),以下哪種技術(shù)通常能提供更準(zhǔn)確的檢測(cè)結(jié)果?()A.基于滑動(dòng)窗口的傳統(tǒng)目標(biāo)檢測(cè)方法B.基于區(qū)域提議的目標(biāo)檢測(cè)算法,如R-CNN系列C.基于回歸的一階段目標(biāo)檢測(cè)算法,如YOLO系列D.基于聚類的目標(biāo)檢測(cè)方法8、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法9、在計(jì)算機(jī)視覺(jué)的圖像特征提取中,假設(shè)要提取對(duì)光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計(jì)算復(fù)雜度高,實(shí)時(shí)性差B.HOG特征對(duì)光照變化適應(yīng)性強(qiáng),但對(duì)旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒(méi)有一種特征提取方法能夠同時(shí)滿足對(duì)光照、旋轉(zhuǎn)和縮放的不變性要求10、計(jì)算機(jī)視覺(jué)中的圖像去霧是一個(gè)具有挑戰(zhàn)性的問(wèn)題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對(duì)大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強(qiáng)的去霧方法D.基于濾波的去霧方法11、在計(jì)算機(jī)視覺(jué)的行人檢測(cè)任務(wù)中,假設(shè)要在一個(gè)擁擠的街道場(chǎng)景中準(zhǔn)確檢測(cè)出行人,場(chǎng)景中存在光照變化、人群遮擋和復(fù)雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學(xué)習(xí)的特征,通過(guò)卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)學(xué)習(xí)D.不提取任何特征,直接對(duì)原始圖像進(jìn)行檢測(cè)12、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要對(duì)一段視頻中的物體運(yùn)動(dòng)進(jìn)行分析,以下關(guān)于光流估計(jì)的描述,正確的是:()A.稀疏光流估計(jì)只計(jì)算圖像中部分特征點(diǎn)的運(yùn)動(dòng),無(wú)法反映整體的運(yùn)動(dòng)趨勢(shì)B.稠密光流估計(jì)能夠得到圖像中每個(gè)像素的運(yùn)動(dòng)向量,但計(jì)算復(fù)雜度較高C.光流估計(jì)的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計(jì)只能用于分析勻速直線運(yùn)動(dòng)的物體,對(duì)于復(fù)雜的運(yùn)動(dòng)模式無(wú)法處理13、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)圖像分析中,輔助醫(yī)生進(jìn)行疾病診斷。假設(shè)要通過(guò)分析CT圖像檢測(cè)腫瘤的位置和大小,以下關(guān)于醫(yī)學(xué)圖像計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.計(jì)算機(jī)視覺(jué)算法可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步判斷B.不同患者的個(gè)體差異和掃描參數(shù)的變化對(duì)腫瘤檢測(cè)結(jié)果沒(méi)有影響C.結(jié)合醫(yī)生的先驗(yàn)知識(shí)和計(jì)算機(jī)視覺(jué)技術(shù)能夠提高腫瘤檢測(cè)的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像中的噪聲和偽影對(duì)計(jì)算機(jī)視覺(jué)算法的性能沒(méi)有影響14、當(dāng)進(jìn)行圖像的風(fēng)格遷移任務(wù)時(shí),假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫的風(fēng)格,同時(shí)保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實(shí)現(xiàn)這一目標(biāo)時(shí)可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對(duì)圖像進(jìn)行簡(jiǎn)單的色彩變換和濾鏡處理C.隨機(jī)改變圖像的像素值來(lái)模擬風(fēng)格遷移D.只對(duì)圖像的邊緣進(jìn)行處理,忽略內(nèi)部區(qū)域15、計(jì)算機(jī)視覺(jué)中的語(yǔ)義理解旨在理解圖像或視頻中的高層語(yǔ)義信息。以下關(guān)于語(yǔ)義理解的說(shuō)法,不正確的是()A.語(yǔ)義理解需要將圖像中的物體、場(chǎng)景和事件等與先驗(yàn)知識(shí)進(jìn)行關(guān)聯(lián)和解釋B.知識(shí)圖譜可以為語(yǔ)義理解提供豐富的語(yǔ)義信息和關(guān)系C.語(yǔ)義理解在圖像描述生成、問(wèn)答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語(yǔ)義理解已經(jīng)達(dá)到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容16、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是對(duì)整個(gè)圖像場(chǎng)景的語(yǔ)義和結(jié)構(gòu)進(jìn)行分析和理解。以下關(guān)于場(chǎng)景理解的描述,不準(zhǔn)確的是()A.場(chǎng)景理解需要綜合考慮物體、空間關(guān)系、上下文信息等多個(gè)方面B.可以通過(guò)構(gòu)建場(chǎng)景圖來(lái)表示場(chǎng)景中的實(shí)體和關(guān)系,輔助場(chǎng)景理解C.場(chǎng)景理解在智能導(dǎo)航、虛擬環(huán)境構(gòu)建和圖像編輯等領(lǐng)域具有潛在的應(yīng)用價(jià)值D.場(chǎng)景理解是一個(gè)已經(jīng)完全解決的問(wèn)題,不存在任何技術(shù)難題17、計(jì)算機(jī)視覺(jué)在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見(jiàn)解。假設(shè)要分析一場(chǎng)足球比賽中球員的跑動(dòng)軌跡和動(dòng)作。以下關(guān)于計(jì)算機(jī)視覺(jué)在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)對(duì)視頻的分析,自動(dòng)跟蹤球員的位置和運(yùn)動(dòng)軌跡B.能夠?qū)η騿T的動(dòng)作進(jìn)行分類,如傳球、射門和防守C.計(jì)算機(jī)視覺(jué)在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無(wú)需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)18、計(jì)算機(jī)視覺(jué)在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實(shí)現(xiàn)真實(shí)的場(chǎng)景交互。以下關(guān)于計(jì)算機(jī)視覺(jué)在VR/AR中的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)對(duì)用戶的動(dòng)作和姿態(tài)進(jìn)行識(shí)別,實(shí)現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實(shí)場(chǎng)景進(jìn)行準(zhǔn)確的融合和匹配C.計(jì)算機(jī)視覺(jué)技術(shù)可以提高VR/AR體驗(yàn)的沉浸感和真實(shí)感D.VR/AR中的計(jì)算機(jī)視覺(jué)應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制19、在計(jì)算機(jī)視覺(jué)的姿態(tài)估計(jì)任務(wù)中,例如估計(jì)人體關(guān)節(jié)的位置和姿態(tài),以下哪種方法可能在精度和實(shí)時(shí)性之間取得較好的平衡?()A.基于模型的方法B.基于深度學(xué)習(xí)的回歸方法C.基于深度學(xué)習(xí)的分類方法D.以上都不是20、在計(jì)算機(jī)視覺(jué)的圖像壓縮任務(wù)中,假設(shè)要在保證一定圖像質(zhì)量的前提下,盡可能減少圖像的數(shù)據(jù)量。以下哪種圖像壓縮方法可能更有效?()A.基于離散余弦變換(DCT)的壓縮算法,如JPEGB.無(wú)損壓縮方法,如PNGC.不進(jìn)行任何壓縮,直接存儲(chǔ)原始圖像D.隨機(jī)刪除圖像中的部分像素21、假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)識(shí)別水果種類和品質(zhì)的計(jì)算機(jī)視覺(jué)系統(tǒng),用于水果分揀和質(zhì)量評(píng)估。在獲取水果圖像時(shí),可能會(huì)受到光照、角度和遮擋等因素的影響。為了提高識(shí)別的準(zhǔn)確性和魯棒性,以下哪種圖像預(yù)處理技術(shù)可能是關(guān)鍵?()A.圖像增強(qiáng)B.圖像去噪C.圖像歸一化D.圖像分割22、在計(jì)算機(jī)視覺(jué)的圖像質(zhì)量評(píng)估任務(wù)中,假設(shè)要評(píng)估一張經(jīng)過(guò)處理后的圖像的質(zhì)量。以下關(guān)于圖像質(zhì)量評(píng)估方法的描述,正確的是:()A.主觀評(píng)估方法通過(guò)人的觀察和判斷來(lái)評(píng)價(jià)圖像質(zhì)量,結(jié)果準(zhǔn)確可靠B.客觀評(píng)估方法中的全參考方法需要原始未失真圖像作為參考,計(jì)算復(fù)雜度低C.無(wú)參考圖像質(zhì)量評(píng)估方法能夠在沒(méi)有原始圖像的情況下準(zhǔn)確評(píng)估圖像質(zhì)量D.所有的圖像質(zhì)量評(píng)估方法都能夠完全反映人對(duì)圖像質(zhì)量的主觀感受23、圖像分類是計(jì)算機(jī)視覺(jué)中的常見(jiàn)任務(wù)之一。對(duì)于圖像分類模型的訓(xùn)練,以下說(shuō)法錯(cuò)誤的是()A.需要大量有標(biāo)注的圖像數(shù)據(jù)來(lái)學(xué)習(xí)不同類別的特征B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色C.模型的訓(xùn)練過(guò)程是不斷調(diào)整參數(shù)以最小化預(yù)測(cè)誤差的過(guò)程D.圖像分類模型一旦訓(xùn)練完成,就無(wú)法再對(duì)新的類別進(jìn)行學(xué)習(xí)和分類24、計(jì)算機(jī)視覺(jué)中,以下哪個(gè)任務(wù)通常需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測(cè)C.圖像超分辨率D.圖像去噪25、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個(gè)特定的目標(biāo)。假設(shè)要跟蹤一個(gè)在運(yùn)動(dòng)場(chǎng)上快速移動(dòng)且形狀變化的運(yùn)動(dòng)員,同時(shí)存在其他相似物體的干擾。以下哪種目標(biāo)跟蹤算法在這種具有挑戰(zhàn)性的場(chǎng)景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C(jī).基于深度學(xué)習(xí)的跟蹤D.基于均值漂移的跟蹤二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)在氣象預(yù)測(cè)中的應(yīng)用。3、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的模型剪枝技術(shù)。4、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在溫室環(huán)境監(jiān)測(cè)中的作用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)以一個(gè)旅游城市的形象宣傳海報(bào)設(shè)計(jì)為例,分析其如何運(yùn)用視覺(jué)元素展示城市特色和吸引游客。2、(本題5分)以某咖啡店的室內(nèi)裝修設(shè)計(jì)為例,分析其如何通過(guò)空間布局、色彩搭配、裝飾元素等營(yíng)造舒適的用餐環(huán)境和獨(dú)特的品牌氛圍。3、(本題5分)以一個(gè)家居品牌的家居清潔產(chǎn)品包裝設(shè)計(jì)為例,分析其如何

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論