青海西寧二十一中2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第1頁(yè)
青海西寧二十一中2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第2頁(yè)
青海西寧二十一中2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第3頁(yè)
青海西寧二十一中2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第4頁(yè)
青海西寧二十一中2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

青海西寧二十一中2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的展開(kāi)式中,滿足的的系數(shù)之和為()A. B. C. D.2.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.3.祖暅原理:“冪勢(shì)既同,則積不容異”.意思是說(shuō):兩個(gè)同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個(gè)同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過(guò)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.65.已知復(fù)數(shù)(為虛數(shù)單位),則下列說(shuō)法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第三象限C.的共軛復(fù)數(shù) D.6.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),則等于()A. B. C. D.7.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.28.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.在中,分別為所對(duì)的邊,若函數(shù)有極值點(diǎn),則的范圍是()A. B.C. D.10.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺11.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]12.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長(zhǎng)為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則____________.14.已知數(shù)列的首項(xiàng),函數(shù)在上有唯一零點(diǎn),則數(shù)列|的前項(xiàng)和__________.15.在如圖所示的三角形數(shù)陣中,用表示第行第個(gè)數(shù),已知,且當(dāng)時(shí),每行中的其他各數(shù)均等于其“肩膀”上的兩個(gè)數(shù)之和,即,若,則正整數(shù)的最小值為_(kāi)_____.16.若關(guān)于的不等式在時(shí)恒成立,則實(shí)數(shù)的取值范圍是_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓的離心率為,且過(guò)點(diǎn),點(diǎn)在第一象限,為左頂點(diǎn),為下頂點(diǎn),交軸于點(diǎn),交軸于點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若,求點(diǎn)的坐標(biāo).18.(12分)在中,角的對(duì)邊分別為,且滿足.(Ⅰ)求角的大??;(Ⅱ)若的面積為,,求和的值.19.(12分)橢圓的左、右焦點(diǎn)分別為,橢圓上兩動(dòng)點(diǎn)使得四邊形為平行四邊形,且平行四邊形的周長(zhǎng)和最大面積分別為8和.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.20.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.21.(12分)已知拋物線與直線.(1)求拋物線C上的點(diǎn)到直線l距離的最小值;(2)設(shè)點(diǎn)是直線l上的動(dòng)點(diǎn),是定點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線,切點(diǎn)為A,B,求證A,Q,B共線;并在時(shí)求點(diǎn)P坐標(biāo).22.(10分)已知圓O經(jīng)過(guò)橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時(shí),的展開(kāi)式中的系數(shù)為.當(dāng),時(shí),系數(shù)為;當(dāng),時(shí),系數(shù)為;當(dāng),時(shí),系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理和多項(xiàng)式乘法是解題關(guān)鍵.2、D【解析】

根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類(lèi)問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.3、A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個(gè)正放的正四面體,一個(gè)倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.4、A【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過(guò)點(diǎn)與的一條漸近線的平行的直線方程,通過(guò)解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對(duì)稱(chēng)性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.5、D【解析】

利用的周期性先將復(fù)數(shù)化簡(jiǎn)為即可得到答案.【詳解】因?yàn)?,,,所以的周期?,故,故的虛部為2,A錯(cuò)誤;在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第二象限,B錯(cuò)誤;的共軛復(fù)數(shù)為,C錯(cuò)誤;,D正確.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識(shí),是一道基礎(chǔ)題.6、A【解析】

先通過(guò)復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.7、C【解析】

作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過(guò)點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.8、C【解析】

先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問(wèn)題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問(wèn)題,畫(huà)出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問(wèn)題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.9、D【解析】試題分析:由已知可得有兩個(gè)不等實(shí)根.考點(diǎn):1、余弦定理;2、函數(shù)的極值.【方法點(diǎn)晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,綜合性較強(qiáng),屬于較難題型.首先利用轉(zhuǎn)化化歸思想將原命題轉(zhuǎn)化為有兩個(gè)不等實(shí)根,從而可得.10、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.11、B【解析】

作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過(guò)與直線平行的直線斜率為-1,∴.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.12、C【解析】

設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長(zhǎng)為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):【點(diǎn)睛】本題考查了棱錐與外接球的位置關(guān)系問(wèn)題,關(guān)鍵是能夠通過(guò)垂直關(guān)系得到直線與平面所求角,再利用球心位置來(lái)求解出線段長(zhǎng),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由于,,則.14、【解析】

由函數(shù)為偶函數(shù),可得唯一零點(diǎn)為,代入可得數(shù)列的遞推關(guān)系式,再進(jìn)行配湊轉(zhuǎn)換為等比數(shù)列,最后運(yùn)用分部求和可得答案.【詳解】因?yàn)闉榕己瘮?shù),在上有唯一零點(diǎn),所以,∴,∴,∴為首項(xiàng)為2,公比為2的等比數(shù)列.所以,.故答案為:【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點(diǎn),同時(shí)也考查了由遞推關(guān)系式求數(shù)列的通項(xiàng),考查了數(shù)列的分部求和,屬于中檔題.15、2022【解析】

根據(jù)條件先求出數(shù)列的通項(xiàng),利用累加法進(jìn)行求解即可.【詳解】,,,下面求數(shù)列的通項(xiàng),由題意知,,,,,,數(shù)列是遞增數(shù)列,且,的最小值為.故答案為:.【點(diǎn)睛】本題主要考查歸納推理的應(yīng)用,結(jié)合數(shù)列的性質(zhì)求出數(shù)列的通項(xiàng)是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于難題.16、【解析】

利用對(duì)數(shù)函數(shù)的單調(diào)性,將不等式去掉對(duì)數(shù)符號(hào),再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問(wèn)題,進(jìn)而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實(shí)數(shù)的取值范圍是。【點(diǎn)睛】本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性,以及恒成立問(wèn)題的常規(guī)解法——分離參數(shù)法。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1)由題意得,求出,進(jìn)而可得到橢圓的方程;(2)由(1)知點(diǎn),坐標(biāo),設(shè)直線的方程為,易知,可得點(diǎn)的坐標(biāo)為,聯(lián)立方程,得到關(guān)于的一元二次方程,結(jié)合根與系數(shù)關(guān)系,可用表示的坐標(biāo),進(jìn)而由三點(diǎn)共線,即,可用表示的坐標(biāo),再結(jié)合,可建立方程,從而求出的值,即可求得點(diǎn)的坐標(biāo).【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點(diǎn),,由題意可設(shè)直線的斜率為,則,所以直線的方程為,則點(diǎn)的坐標(biāo)為,聯(lián)立方程,消去得:.設(shè),則,所以,所以,所以.設(shè)點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)三點(diǎn)共線,所以,即,所以,所以.因?yàn)?,所以,即,所以,解得,又,所以符合題意,計(jì)算可得,,故點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查平行線的性質(zhì),考查學(xué)生的計(jì)算求解能力,屬于難題.18、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)運(yùn)用正弦定理和二角和的正弦公式,化簡(jiǎn),即可求出角的大??;(Ⅱ)通過(guò)面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據(jù)同角的三角函數(shù)關(guān)系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點(diǎn)睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數(shù)關(guān)系,考查了運(yùn)算能力.19、(1)(2)或【解析】

(1)根據(jù)題意計(jì)算得到,,得到橢圓方程.(2)設(shè),聯(lián)立方程得到,根據(jù),計(jì)算得到答案.【詳解】(1)由平行四邊形的周長(zhǎng)為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過(guò)定點(diǎn).設(shè),由消得,所以,因?yàn)椋?因?yàn)辄c(diǎn)在以線段為直徑的圓上,所以,即,所以直線的方程或.【點(diǎn)睛】本題考查了橢圓方程,根據(jù)直線和橢圓的位置關(guān)系求直線,將題目轉(zhuǎn)化為是解題的關(guān)鍵.20、(1)證明見(jiàn)解析(2)【解析】

(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過(guò)點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個(gè)法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過(guò)點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個(gè)法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.21、(1);(2)證明見(jiàn)解析,或【解析】

(1)根據(jù)點(diǎn)到直線的公式結(jié)合二次函數(shù)的性質(zhì)即可求出;(2)設(shè),,,,表示出直線,的方程,利用表示出,,即可求定點(diǎn)的坐標(biāo).【詳解】(1)設(shè)拋物線上點(diǎn)的坐標(biāo)為,則,時(shí)取等號(hào)),則拋物線上的點(diǎn)到直線距離的最小值;(2)設(shè),,,,,,直線,的方程為分別為,,由兩

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論