




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第六講:基本初等函數(shù)【考點(diǎn)梳理】1.冪函數(shù)的概念一般地,形如SKIPIF1<0(SKIPIF1<0)的函數(shù)稱為冪函數(shù),其中底數(shù)SKIPIF1<0為自變量,SKIPIF1<0為常數(shù).2.幾個(gè)常見冪函數(shù)的圖象與性質(zhì)函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0奇偶性奇函數(shù)偶函數(shù)奇函數(shù)非奇非偶函數(shù)奇函數(shù)單調(diào)性在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞減;在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減過(guò)定點(diǎn)過(guò)定點(diǎn)SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<03.常用結(jié)論(1)冪函數(shù)在SKIPIF1<0上都有定義.(2)冪函數(shù)的圖象均過(guò)定點(diǎn)SKIPIF1<0.(3)當(dāng)SKIPIF1<0時(shí),冪函數(shù)的圖象均過(guò)定點(diǎn)SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞增.(4)當(dāng)SKIPIF1<0時(shí),冪函數(shù)的圖象均過(guò)定點(diǎn)SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞減.(5)冪函數(shù)在第四象限無(wú)圖象.4.根式的概念及性質(zhì)(1)概念:式子SKIPIF1<0叫做根式,其中SKIPIF1<0叫做根指數(shù),SKIPIF1<0叫做被開方數(shù).(2)性質(zhì):①SKIPIF1<0(SKIPIF1<0且SKIPIF1<0);②當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<05.分?jǐn)?shù)指數(shù)冪①正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0);②正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0);③0的正分?jǐn)?shù)指數(shù)冪等于0;0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義.6.指數(shù)冪的運(yùn)算性質(zhì)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.7.指數(shù)函數(shù)及其性質(zhì)(1)指數(shù)函數(shù)的概念函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)叫做指數(shù)函數(shù),其中指數(shù)SKIPIF1<0是自變量,函數(shù)的定義域是SKIPIF1<0.(2)指數(shù)函數(shù)SKIPIF1<0的圖象和性質(zhì)底數(shù)SKIPIF1<0SKIPIF1<0圖象性質(zhì)定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0圖象過(guò)定點(diǎn)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0在定義域SKIPIF1<0上為增函數(shù)在定義域SKIPIF1<0上為減函數(shù)注意指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象和性質(zhì)與SKIPIF1<0的取值有關(guān),應(yīng)分SKIPIF1<0與SKIPIF1<0來(lái)研究8.對(duì)數(shù)的概念(1)對(duì)數(shù):一般地,如果SKIPIF1<0SKIPIF1<0,那么數(shù)SKIPIF1<0叫做以SKIPIF1<0為底SKIPIF1<0的對(duì)數(shù),記作SKIPIF1<0,其中SKIPIF1<0叫做對(duì)數(shù)的底數(shù),SKIPIF1<0叫做真數(shù).(2)牢記兩個(gè)重要對(duì)數(shù):常用對(duì)數(shù),以10為底的對(duì)數(shù)SKIPIF1<0;自然對(duì)數(shù),以無(wú)理數(shù)e=2.71828…為底數(shù)的對(duì)數(shù)SKIPIF1<0.(3)對(duì)數(shù)式與指數(shù)式的互化:SKIPIF1<0.9.對(duì)數(shù)的性質(zhì)、運(yùn)算性質(zhì)與換底公式(1)對(duì)數(shù)的性質(zhì)根據(jù)對(duì)數(shù)的概念,知對(duì)數(shù)SKIPIF1<0具有以下性質(zhì):①負(fù)數(shù)和零沒(méi)有對(duì)數(shù),即SKIPIF1<0;②1的對(duì)數(shù)等于0,即SKIPIF1<0;③底數(shù)的對(duì)數(shù)等于1,即SKIPIF1<0;④對(duì)數(shù)恒等式SKIPIF1<0.(2)對(duì)數(shù)的運(yùn)算性質(zhì)如果SKIPIF1<0,那么:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.(3)對(duì)數(shù)的換底公式對(duì)數(shù)的換底公式:SKIPIF1<0.換底公式將底數(shù)不同的對(duì)數(shù)轉(zhuǎn)化為底數(shù)相同的對(duì)數(shù),進(jìn)而進(jìn)行化簡(jiǎn)、計(jì)算或證明.換底公式應(yīng)用時(shí)究竟換成什么為底,由已知條件來(lái)確定,一般換成以10為底的常用對(duì)數(shù)或以SKIPIF1<0為底的自然對(duì)數(shù).換底公式的變形及推廣:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均大于0且不等于1,SKIPIF1<0).10.對(duì)數(shù)函數(shù)及其性質(zhì)(1)對(duì)數(shù)函數(shù)的定義形如SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的函數(shù)叫做對(duì)數(shù)函數(shù),其中SKIPIF1<0是自變量,函數(shù)的定義域是SKIPIF1<0.(2)對(duì)數(shù)函數(shù)的圖象與性質(zhì)SKIPIF1<0SKIPIF1<0圖象性質(zhì)定義域:SKIPIF1<0值域:SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上是單調(diào)增函數(shù)在SKIPIF1<0上是單調(diào)減函數(shù)【典型題型講解】考點(diǎn)一:冪函數(shù)的定義及其圖像【典例例題】例1.冪函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則實(shí)數(shù)SKIPIF1<0的值為(
)A.SKIPIF1<0 B.0或2 C.0 D.2例2.已知冪函數(shù)SKIPIF1<0(p,q∈Z且p,q互質(zhì))的圖象關(guān)于y軸對(duì)稱,如圖所示,則(
)A.p,q均為奇數(shù),且SKIPIF1<0B.q為偶數(shù),p為奇數(shù),且SKIPIF1<0C.q為奇數(shù),p為偶數(shù),且SKIPIF1<0D.q為奇數(shù),p為偶數(shù),且SKIPIF1<0【方法技巧與總結(jié)】1.5種特殊冪函數(shù)的圖像及其性質(zhì);2.冪函數(shù)的單調(diào)性及奇偶性的性質(zhì)判斷方法.【變式訓(xùn)練】1.(2022·廣東深圳·高三期末)已知函數(shù)SKIPIF1<0的圖像關(guān)于原點(diǎn)對(duì)稱,且在定義域內(nèi)單調(diào)遞增,則滿足上述條件的冪函數(shù)可以為SKIPIF1<0______.2.已知冪函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象關(guān)于SKIPIF1<0軸對(duì)稱,且在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的值為______.3.如圖是冪函數(shù)SKIPIF1<0(αi>0,i=1,2,3,4,5)在第一象限內(nèi)的圖象,其中α1=3,α2=2,α3=1,SKIPIF1<0,SKIPIF1<0,已知它們具有性質(zhì):①都經(jīng)過(guò)點(diǎn)(0,0)和(1,1);
②在第一象限都是增函數(shù).請(qǐng)你根據(jù)圖象寫出它們?cè)冢?,+∞)上的另外一個(gè)共同性質(zhì):___________.4.已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不同的實(shí)根,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0考點(diǎn)二:指數(shù)與指數(shù)冪的運(yùn)算【典例例題】例1.化簡(jiǎn):(1)SKIPIF1<0(2)SKIPIF1<0(a>0,b>0).(3)SKIPIF1<0.【方法技巧與總結(jié)】利用指數(shù)的運(yùn)算性質(zhì)解題.對(duì)于形如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的形式常用“化同底”轉(zhuǎn)化,再利用指數(shù)函數(shù)單調(diào)性解決;【變式訓(xùn)練】1.SKIPIF1<0=()A.2 B.1 C.3 D.02.甲?乙兩人解關(guān)于x的方程SKIPIF1<0,甲寫錯(cuò)了常數(shù)b,得到的根為SKIPIF1<0或x=SKIPIF1<0,乙寫錯(cuò)了常數(shù)c,得到的根為SKIPIF1<0或SKIPIF1<0,則原方程的根是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0考點(diǎn)三:指數(shù)函數(shù)的圖像及性質(zhì)【典例例題】例1.函數(shù)SKIPIF1<0恰有一個(gè)零點(diǎn),則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例2.已知SKIPIF1<0為定義在R上的奇函數(shù),SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【方法技巧與總結(jié)】指數(shù)函數(shù)的解析式具有單一性;指數(shù)函數(shù)的單調(diào)性和圖像與底數(shù)有關(guān)系.【變式訓(xùn)練】1.函數(shù)SKIPIF1<0,下列關(guān)于函數(shù)SKIPIF1<0的說(shuō)法錯(cuò)誤的是(
)A.函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱B.函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0C.不等式SKIPIF1<0的解集是SKIPIF1<0D.SKIPIF1<0是增函數(shù)2.函數(shù)SKIPIF1<0圖象過(guò)定點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0最小值為___________.3.已知定義在R上的函數(shù)SKIPIF1<0滿足:①SKIPIF1<0;②SKIPIF1<0;③在SKIPIF1<0上的解析式為SKIPIF1<0,則函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象在區(qū)間SKIPIF1<0上的交點(diǎn)個(gè)數(shù)為(
)A.3 B.4 C.5 D.64.(2022·北京·二模)若函數(shù)SKIPIF1<0的定義域和值域的交集為空集,則正數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·甘肅省武威第一中學(xué)模擬預(yù)測(cè)(文))已知函數(shù)SKIPIF1<0,則SKIPIF1<0______.6.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0______.7.已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為___________.8.設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0是函數(shù)SKIPIF1<0的最大值,則實(shí)數(shù)SKIPIF1<0的取值范圍為_______.考點(diǎn)四:對(duì)數(shù)概念與對(duì)數(shù)運(yùn)算【典例例題】例1.(1)計(jì)算SKIPIF1<0;(2)已知SKIPIF1<0,求實(shí)數(shù)x的值;(3)若SKIPIF1<0,SKIPIF1<0,用a,b,表示SKIPIF1<0.【方法技巧與總結(jié)】對(duì)數(shù)的有關(guān)運(yùn)算問(wèn)題要注意公式的順用、逆用、變形用等.對(duì)數(shù)方程或?qū)?shù)不等式問(wèn)題是要將其化為同底,利用對(duì)數(shù)單調(diào)性去掉對(duì)數(shù)符號(hào),轉(zhuǎn)化為不含對(duì)數(shù)的問(wèn)題,但這里必須注意對(duì)數(shù)的真數(shù)為正.【變式訓(xùn)練】1.(1)求SKIPIF1<0的值.(2)已知SKIPIF1<0,SKIPIF1<0,試用SKIPIF1<0,SKIPIF1<0表示SKIPIF1<02.(2022·廣東惠州·一模)中國(guó)的5G技術(shù)領(lǐng)先世界,5G技術(shù)的數(shù)學(xué)原理之一便是著名的香農(nóng)公式:SKIPIF1<0,它表示:在受噪聲干擾的信道中,最大信息傳遞速率C取決于信道帶寬W?信道內(nèi)信號(hào)的平均功率S?信道內(nèi)部的高斯噪聲功率N的大小,其中SKIPIF1<0叫做信噪比.當(dāng)信噪比比較大時(shí),公式中真數(shù)中的1可以忽略不計(jì),按照香農(nóng)公式,若不改變帶寬W,而將信噪比SKIPIF1<0從1000提升至5000,則C大約增加了(
)(附:SKIPIF1<0)A.20% B.23% C.28% D.50%3.(2022·廣東韶關(guān)·一模)某種放射性物質(zhì)不斷變化為其他物質(zhì),每經(jīng)過(guò)一年剩留的該種放射性物質(zhì)的質(zhì)量約是原來(lái)的SKIPIF1<0,估計(jì)經(jīng)過(guò)多少年,該物質(zhì)剩留的是原來(lái)的SKIPIF1<0?(
)(參考數(shù)據(jù):SKIPIF1<0)A.16 B.17 C.18 D.194.(2022·廣東·金山中學(xué)高三期末)教室通風(fēng)的目的是通過(guò)空氣的流動(dòng),排出室內(nèi)的污濁空氣和致病微生物,降低室內(nèi)二氧化碳和致病微生物的濃度,送進(jìn)室外的新鮮空氣.按照國(guó)家標(biāo)準(zhǔn),教室內(nèi)空氣中二氧化碳日平均最高容許濃度應(yīng)小于等于0.1%.經(jīng)測(cè)定,剛下課時(shí),空氣中含有0.2%的二氧化碳,若開窗通風(fēng)后教室內(nèi)二氧化碳的濃度為SKIPIF1<0%,且SKIPIF1<0隨時(shí)間SKIPIF1<0(單位:分鐘)的變化規(guī)律可以用函數(shù)SKIPIF1<0描述,則該教室內(nèi)的二氧化碳濃度達(dá)到國(guó)家標(biāo)準(zhǔn)至少需要的時(shí)間為(
)(參考數(shù)據(jù)SKIPIF1<0)A.11分鐘 B.14分鐘C.15分鐘 D.20分鐘考點(diǎn)五:對(duì)數(shù)函數(shù)的圖像及性質(zhì)【典例例題】例1.(2022·廣東中山·高三期末)已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的圖象可能是(
)A. B.C. D.例2.(2022·廣東珠?!じ呷谀┰O(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c大小關(guān)系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【方法技巧與總結(jié)】對(duì)數(shù)的函數(shù)的圖像畫法,定點(diǎn)問(wèn)題;對(duì)數(shù)函數(shù)的圖像及性質(zhì)應(yīng)用.【變式訓(xùn)練】1.(2022·廣東茂名·一模)已知SKIPIF1<0均為大于0的實(shí)數(shù),且SKIPIF1<0,則SKIPIF1<0大小關(guān)系正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東茂名·一模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0均不相等,且SKIPIF1<0,則SKIPIF1<0的取值范圍是___________3.(2022·廣東湛江·一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0表示m,n中的最小值,設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0恰有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是___________.4.己知實(shí)數(shù)SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(多選題)已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象如下所示.函數(shù)SKIPIF1<0的圖象上有兩個(gè)不同的點(diǎn)SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增函數(shù) D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<06.(2022·廣東·三模)已知SKIPIF1<0,e是自然對(duì)數(shù)的底,若SKIPIF1<0,則SKIPIF1<0的取值可以是(
)A.1 B.2 C.3 D.4【鞏固練習(xí)】1.已知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.是偶函數(shù),且在SKIPIF1<0是單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0是單調(diào)遞增C.是偶函數(shù),且在SKIPIF1<0是單調(diào)遞減 D.是奇函數(shù),且在SKIPIF1<0是單調(diào)遞減2.1947年,生物學(xué)家MaxKleiber發(fā)表了一篇題為《bodysizeandmetabolicrate》的論文,在論文中提出了一個(gè)克萊伯定律:對(duì)于哺乳動(dòng)物,其基礎(chǔ)代謝率與體重的SKIPIF1<0次冪成正比,即SKIPIF1<0,其中F為基礎(chǔ)代謝率,M為體重.若某哺乳動(dòng)物經(jīng)過(guò)一段時(shí)間生長(zhǎng),其體重為原來(lái)的10倍,則基礎(chǔ)代謝率為原來(lái)的(參考數(shù)據(jù):SKIPIF1<0)(
)A.5.4倍 B.5.5倍 C.5.6倍 D.5.7倍3.已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.26 B.16 C.-16 D.-264.若函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.25.已知函數(shù)SKIPIF1<0滿足:對(duì)任意SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.關(guān)于函數(shù)SKIPIF1<0和實(shí)數(shù)SKIPIF1<0的下列結(jié)論中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<07.區(qū)塊鏈作為一種新型的技術(shù),被應(yīng)用于許多領(lǐng)域.在區(qū)塊鏈技術(shù)中,某個(gè)密碼的長(zhǎng)度設(shè)定為512B,則密碼一共有SKIPIF1<0種可能,為了破解該密碼,在最壞的情況下,需要進(jìn)行SKIPIF1<0次運(yùn)算.現(xiàn)在有一臺(tái)計(jì)算機(jī),每秒能進(jìn)行SKIPIF1<0次運(yùn)算,那么在最壞的情況下,這臺(tái)計(jì)算機(jī)破譯該密碼所需的時(shí)間大約為(參考數(shù)據(jù)SKIPIF1<0,SKIPIF1<0)(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.已知SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.39.已知正實(shí)數(shù)x,y,z滿足SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年一級(jí)建造師經(jīng)濟(jì)章節(jié)題庫(kù)及答案
- 山東省棗莊達(dá)標(biāo)名校2025屆初三下學(xué)期5月階段性教學(xué)質(zhì)量檢測(cè)試題英語(yǔ)試題試卷含答案
- 電子科技大學(xué)中山學(xué)院《臨床醫(yī)學(xué)概論Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 內(nèi)蒙古體育職業(yè)學(xué)院《鋼琴與即興伴奏二》2023-2024學(xué)年第二學(xué)期期末試卷
- 佛山科學(xué)技術(shù)學(xué)院《矢量圖設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 寧波幼兒師范高等??茖W(xué)校《BIM建筑工程計(jì)量與計(jì)價(jià)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東商業(yè)職業(yè)技術(shù)學(xué)院《基礎(chǔ)俄語(yǔ)(1)》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣東交通職業(yè)技術(shù)學(xué)院《中國(guó)現(xiàn)代文學(xué)作家解讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)治職業(yè)技術(shù)學(xué)院《電磁場(chǎng)與天線B》2023-2024學(xué)年第二學(xué)期期末試卷
- 益陽(yáng)醫(yī)學(xué)高等??茖W(xué)?!稒C(jī)械系統(tǒng)設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 實(shí)習(xí)協(xié)議書簡(jiǎn)單模板
- 2025屆高三部分重點(diǎn)中學(xué)3月聯(lián)合測(cè)評(píng)(T8聯(lián)考)地理試卷(河北版含答案)
- 小學(xué)一年級(jí)數(shù)學(xué)下冊(cè)口算題卡
- 肝功能檢查的試題及答案
- 2025年江蘇城鄉(xiāng)建設(shè)職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性考試題庫(kù)匯編
- DB32-T 339-2007中華絨螯蟹 一齡蟹種培育
- 《頁(yè)巖氣 保壓取心技術(shù)規(guī)范 第1部分:取心作業(yè)》
- 2025年中國(guó)陜西省保險(xiǎn)現(xiàn)狀分析及市場(chǎng)前景預(yù)測(cè)
- 七年級(jí) 人教版 地理 第八章《第二節(jié) 歐洲西部》課件 第三課時(shí)
- 電廠安全培訓(xùn)課件
- 天體運(yùn)動(dòng)中的三大模型(講義)-2025年高考物理一輪復(fù)習(xí)(新教材新高考)
評(píng)論
0/150
提交評(píng)論