版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第六講:基本初等函數(shù)【考點梳理】1.冪函數(shù)的概念一般地,形如SKIPIF1<0(SKIPIF1<0)的函數(shù)稱為冪函數(shù),其中底數(shù)SKIPIF1<0為自變量,SKIPIF1<0為常數(shù).2.幾個常見冪函數(shù)的圖象與性質函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0奇偶性奇函數(shù)偶函數(shù)奇函數(shù)非奇非偶函數(shù)奇函數(shù)單調性在SKIPIF1<0上單調遞增在SKIPIF1<0上單調遞減;在SKIPIF1<0上單調遞增在SKIPIF1<0上單調遞增在SKIPIF1<0上單調遞增在SKIPIF1<0和SKIPIF1<0上單調遞減過定點過定點SKIPIF1<0過定點SKIPIF1<03.常用結論(1)冪函數(shù)在SKIPIF1<0上都有定義.(2)冪函數(shù)的圖象均過定點SKIPIF1<0.(3)當SKIPIF1<0時,冪函數(shù)的圖象均過定點SKIPIF1<0,且在SKIPIF1<0上單調遞增.(4)當SKIPIF1<0時,冪函數(shù)的圖象均過定點SKIPIF1<0,且在SKIPIF1<0上單調遞減.(5)冪函數(shù)在第四象限無圖象.4.根式的概念及性質(1)概念:式子SKIPIF1<0叫做根式,其中SKIPIF1<0叫做根指數(shù),SKIPIF1<0叫做被開方數(shù).(2)性質:①SKIPIF1<0(SKIPIF1<0且SKIPIF1<0);②當SKIPIF1<0為奇數(shù)時,SKIPIF1<0;當SKIPIF1<0為偶數(shù)時,SKIPIF1<05.分數(shù)指數(shù)冪①正數(shù)的正分數(shù)指數(shù)冪的意義是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0);②正數(shù)的負分數(shù)指數(shù)冪的意義是SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0);③0的正分數(shù)指數(shù)冪等于0;0的負分數(shù)指數(shù)冪沒有意義.6.指數(shù)冪的運算性質①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.7.指數(shù)函數(shù)及其性質(1)指數(shù)函數(shù)的概念函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)叫做指數(shù)函數(shù),其中指數(shù)SKIPIF1<0是自變量,函數(shù)的定義域是SKIPIF1<0.(2)指數(shù)函數(shù)SKIPIF1<0的圖象和性質底數(shù)SKIPIF1<0SKIPIF1<0圖象性質定義域為SKIPIF1<0,值域為SKIPIF1<0圖象過定點SKIPIF1<0當SKIPIF1<0時,恒有SKIPIF1<0;當SKIPIF1<0時,恒有SKIPIF1<0當SKIPIF1<0時,恒有SKIPIF1<0;當SKIPIF1<0時,恒有SKIPIF1<0在定義域SKIPIF1<0上為增函數(shù)在定義域SKIPIF1<0上為減函數(shù)注意指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象和性質與SKIPIF1<0的取值有關,應分SKIPIF1<0與SKIPIF1<0來研究8.對數(shù)的概念(1)對數(shù):一般地,如果SKIPIF1<0SKIPIF1<0,那么數(shù)SKIPIF1<0叫做以SKIPIF1<0為底SKIPIF1<0的對數(shù),記作SKIPIF1<0,其中SKIPIF1<0叫做對數(shù)的底數(shù),SKIPIF1<0叫做真數(shù).(2)牢記兩個重要對數(shù):常用對數(shù),以10為底的對數(shù)SKIPIF1<0;自然對數(shù),以無理數(shù)e=2.71828…為底數(shù)的對數(shù)SKIPIF1<0.(3)對數(shù)式與指數(shù)式的互化:SKIPIF1<0.9.對數(shù)的性質、運算性質與換底公式(1)對數(shù)的性質根據(jù)對數(shù)的概念,知對數(shù)SKIPIF1<0具有以下性質:①負數(shù)和零沒有對數(shù),即SKIPIF1<0;②1的對數(shù)等于0,即SKIPIF1<0;③底數(shù)的對數(shù)等于1,即SKIPIF1<0;④對數(shù)恒等式SKIPIF1<0.(2)對數(shù)的運算性質如果SKIPIF1<0,那么:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.(3)對數(shù)的換底公式對數(shù)的換底公式:SKIPIF1<0.換底公式將底數(shù)不同的對數(shù)轉化為底數(shù)相同的對數(shù),進而進行化簡、計算或證明.換底公式應用時究竟換成什么為底,由已知條件來確定,一般換成以10為底的常用對數(shù)或以SKIPIF1<0為底的自然對數(shù).換底公式的變形及推廣:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均大于0且不等于1,SKIPIF1<0).10.對數(shù)函數(shù)及其性質(1)對數(shù)函數(shù)的定義形如SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的函數(shù)叫做對數(shù)函數(shù),其中SKIPIF1<0是自變量,函數(shù)的定義域是SKIPIF1<0.(2)對數(shù)函數(shù)的圖象與性質SKIPIF1<0SKIPIF1<0圖象性質定義域:SKIPIF1<0值域:SKIPIF1<0過點SKIPIF1<0,即當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上是單調增函數(shù)在SKIPIF1<0上是單調減函數(shù)【典型題型講解】考點一:冪函數(shù)的定義及其圖像【典例例題】例1.冪函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),則實數(shù)SKIPIF1<0的值為(
)A.SKIPIF1<0 B.0或2 C.0 D.2例2.已知冪函數(shù)SKIPIF1<0(p,q∈Z且p,q互質)的圖象關于y軸對稱,如圖所示,則(
)A.p,q均為奇數(shù),且SKIPIF1<0B.q為偶數(shù),p為奇數(shù),且SKIPIF1<0C.q為奇數(shù),p為偶數(shù),且SKIPIF1<0D.q為奇數(shù),p為偶數(shù),且SKIPIF1<0【方法技巧與總結】1.5種特殊冪函數(shù)的圖像及其性質;2.冪函數(shù)的單調性及奇偶性的性質判斷方法.【變式訓練】1.(2022·廣東深圳·高三期末)已知函數(shù)SKIPIF1<0的圖像關于原點對稱,且在定義域內單調遞增,則滿足上述條件的冪函數(shù)可以為SKIPIF1<0______.2.已知冪函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象關于SKIPIF1<0軸對稱,且在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的值為______.3.如圖是冪函數(shù)SKIPIF1<0(αi>0,i=1,2,3,4,5)在第一象限內的圖象,其中α1=3,α2=2,α3=1,SKIPIF1<0,SKIPIF1<0,已知它們具有性質:①都經過點(0,0)和(1,1);
②在第一象限都是增函數(shù).請你根據(jù)圖象寫出它們在(1,+∞)上的另外一個共同性質:___________.4.已知函數(shù)SKIPIF1<0,若關于SKIPIF1<0的方程SKIPIF1<0有兩個不同的實根,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0考點二:指數(shù)與指數(shù)冪的運算【典例例題】例1.化簡:(1)SKIPIF1<0(2)SKIPIF1<0(a>0,b>0).(3)SKIPIF1<0.【方法技巧與總結】利用指數(shù)的運算性質解題.對于形如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的形式常用“化同底”轉化,再利用指數(shù)函數(shù)單調性解決;【變式訓練】1.SKIPIF1<0=()A.2 B.1 C.3 D.02.甲?乙兩人解關于x的方程SKIPIF1<0,甲寫錯了常數(shù)b,得到的根為SKIPIF1<0或x=SKIPIF1<0,乙寫錯了常數(shù)c,得到的根為SKIPIF1<0或SKIPIF1<0,則原方程的根是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0考點三:指數(shù)函數(shù)的圖像及性質【典例例題】例1.函數(shù)SKIPIF1<0恰有一個零點,則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例2.已知SKIPIF1<0為定義在R上的奇函數(shù),SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調遞增,在SKIPIF1<0上單調遞減,則不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【方法技巧與總結】指數(shù)函數(shù)的解析式具有單一性;指數(shù)函數(shù)的單調性和圖像與底數(shù)有關系.【變式訓練】1.函數(shù)SKIPIF1<0,下列關于函數(shù)SKIPIF1<0的說法錯誤的是(
)A.函數(shù)SKIPIF1<0的圖象關于原點對稱B.函數(shù)SKIPIF1<0的值域為SKIPIF1<0C.不等式SKIPIF1<0的解集是SKIPIF1<0D.SKIPIF1<0是增函數(shù)2.函數(shù)SKIPIF1<0圖象過定點SKIPIF1<0,點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0最小值為___________.3.已知定義在R上的函數(shù)SKIPIF1<0滿足:①SKIPIF1<0;②SKIPIF1<0;③在SKIPIF1<0上的解析式為SKIPIF1<0,則函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象在區(qū)間SKIPIF1<0上的交點個數(shù)為(
)A.3 B.4 C.5 D.64.(2022·北京·二模)若函數(shù)SKIPIF1<0的定義域和值域的交集為空集,則正數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·甘肅省武威第一中學模擬預測(文))已知函數(shù)SKIPIF1<0,則SKIPIF1<0______.6.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0______.7.已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為___________.8.設函數(shù)SKIPIF1<0,若SKIPIF1<0是函數(shù)SKIPIF1<0的最大值,則實數(shù)SKIPIF1<0的取值范圍為_______.考點四:對數(shù)概念與對數(shù)運算【典例例題】例1.(1)計算SKIPIF1<0;(2)已知SKIPIF1<0,求實數(shù)x的值;(3)若SKIPIF1<0,SKIPIF1<0,用a,b,表示SKIPIF1<0.【方法技巧與總結】對數(shù)的有關運算問題要注意公式的順用、逆用、變形用等.對數(shù)方程或對數(shù)不等式問題是要將其化為同底,利用對數(shù)單調性去掉對數(shù)符號,轉化為不含對數(shù)的問題,但這里必須注意對數(shù)的真數(shù)為正.【變式訓練】1.(1)求SKIPIF1<0的值.(2)已知SKIPIF1<0,SKIPIF1<0,試用SKIPIF1<0,SKIPIF1<0表示SKIPIF1<02.(2022·廣東惠州·一模)中國的5G技術領先世界,5G技術的數(shù)學原理之一便是著名的香農公式:SKIPIF1<0,它表示:在受噪聲干擾的信道中,最大信息傳遞速率C取決于信道帶寬W?信道內信號的平均功率S?信道內部的高斯噪聲功率N的大小,其中SKIPIF1<0叫做信噪比.當信噪比比較大時,公式中真數(shù)中的1可以忽略不計,按照香農公式,若不改變帶寬W,而將信噪比SKIPIF1<0從1000提升至5000,則C大約增加了(
)(附:SKIPIF1<0)A.20% B.23% C.28% D.50%3.(2022·廣東韶關·一模)某種放射性物質不斷變化為其他物質,每經過一年剩留的該種放射性物質的質量約是原來的SKIPIF1<0,估計經過多少年,該物質剩留的是原來的SKIPIF1<0?(
)(參考數(shù)據(jù):SKIPIF1<0)A.16 B.17 C.18 D.194.(2022·廣東·金山中學高三期末)教室通風的目的是通過空氣的流動,排出室內的污濁空氣和致病微生物,降低室內二氧化碳和致病微生物的濃度,送進室外的新鮮空氣.按照國家標準,教室內空氣中二氧化碳日平均最高容許濃度應小于等于0.1%.經測定,剛下課時,空氣中含有0.2%的二氧化碳,若開窗通風后教室內二氧化碳的濃度為SKIPIF1<0%,且SKIPIF1<0隨時間SKIPIF1<0(單位:分鐘)的變化規(guī)律可以用函數(shù)SKIPIF1<0描述,則該教室內的二氧化碳濃度達到國家標準至少需要的時間為(
)(參考數(shù)據(jù)SKIPIF1<0)A.11分鐘 B.14分鐘C.15分鐘 D.20分鐘考點五:對數(shù)函數(shù)的圖像及性質【典例例題】例1.(2022·廣東中山·高三期末)已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的圖象可能是(
)A. B.C. D.例2.(2022·廣東珠?!じ呷谀┰OSKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c大小關系為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【方法技巧與總結】對數(shù)的函數(shù)的圖像畫法,定點問題;對數(shù)函數(shù)的圖像及性質應用.【變式訓練】1.(2022·廣東茂名·一模)已知SKIPIF1<0均為大于0的實數(shù),且SKIPIF1<0,則SKIPIF1<0大小關系正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東茂名·一模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0均不相等,且SKIPIF1<0,則SKIPIF1<0的取值范圍是___________3.(2022·廣東湛江·一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0表示m,n中的最小值,設函數(shù)SKIPIF1<0,若SKIPIF1<0恰有3個零點,則實數(shù)a的取值范圍是___________.4.己知實數(shù)SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(多選題)已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象如下所示.函數(shù)SKIPIF1<0的圖象上有兩個不同的點SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0在SKIPIF1<0上是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上是單調遞增函數(shù) D.當SKIPIF1<0時,SKIPIF1<06.(2022·廣東·三模)已知SKIPIF1<0,e是自然對數(shù)的底,若SKIPIF1<0,則SKIPIF1<0的取值可以是(
)A.1 B.2 C.3 D.4【鞏固練習】1.已知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.是偶函數(shù),且在SKIPIF1<0是單調遞增 B.是奇函數(shù),且在SKIPIF1<0是單調遞增C.是偶函數(shù),且在SKIPIF1<0是單調遞減 D.是奇函數(shù),且在SKIPIF1<0是單調遞減2.1947年,生物學家MaxKleiber發(fā)表了一篇題為《bodysizeandmetabolicrate》的論文,在論文中提出了一個克萊伯定律:對于哺乳動物,其基礎代謝率與體重的SKIPIF1<0次冪成正比,即SKIPIF1<0,其中F為基礎代謝率,M為體重.若某哺乳動物經過一段時間生長,其體重為原來的10倍,則基礎代謝率為原來的(參考數(shù)據(jù):SKIPIF1<0)(
)A.5.4倍 B.5.5倍 C.5.6倍 D.5.7倍3.已知函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.26 B.16 C.-16 D.-264.若函數(shù)SKIPIF1<0的零點為SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.25.已知函數(shù)SKIPIF1<0滿足:對任意SKIPIF1<0,SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.關于函數(shù)SKIPIF1<0和實數(shù)SKIPIF1<0的下列結論中正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<07.區(qū)塊鏈作為一種新型的技術,被應用于許多領域.在區(qū)塊鏈技術中,某個密碼的長度設定為512B,則密碼一共有SKIPIF1<0種可能,為了破解該密碼,在最壞的情況下,需要進行SKIPIF1<0次運算.現(xiàn)在有一臺計算機,每秒能進行SKIPIF1<0次運算,那么在最壞的情況下,這臺計算機破譯該密碼所需的時間大約為(參考數(shù)據(jù)SKIPIF1<0,SKIPIF1<0)(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<08.已知SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.39.已知正實數(shù)x,y,z滿足SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江警官職業(yè)學院《品牌形象專項設計一》2023-2024學年第一學期期末試卷
- 中國民用航空飛行學院《現(xiàn)代交換技術》2023-2024學年第一學期期末試卷
- 鄭州旅游職業(yè)學院《當代資本主義》2023-2024學年第一學期期末試卷
- 小學預算編制收支審批制度
- 浙江傳媒學院《應用程序設計實驗》2023-2024學年第一學期期末試卷
- 漳州城市職業(yè)學院《長跑》2023-2024學年第一學期期末試卷
- 深度學習在元數(shù)據(jù)分析中的探索
- 雙十二品牌提升策略模板
- 專業(yè)基礎-房地產經紀人《專業(yè)基礎》點睛提分卷3
- 2024-2025學年江蘇省無錫市江陰市八年級(上)期末數(shù)學試卷
- 廣東省惠州市2024-2025學年高一上學期期末考試英語試題(含答案)
- 醫(yī)院骨科2025年帶教計劃(2篇)
- 2024-2025學年北京市東城區(qū)高一上學期期末考試數(shù)學試卷(含答案)
- 環(huán)境保護應急管理制度執(zhí)行細則
- 2024-2030年中國通航飛行服務站(FSS)行業(yè)發(fā)展模式規(guī)劃分析報告
- 機械制造企業(yè)風險分級管控手冊
- 地系梁工程施工方案
- 藏文基礎-教你輕輕松松學藏語(西藏大學)知到智慧樹章節(jié)答案
- 2024電子商務平臺用戶隱私保護協(xié)議3篇
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 英語 含答案
- 醫(yī)學教程 常見體表腫瘤與腫塊課件
評論
0/150
提交評論