新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線??級狠S小題全歸類(16大題型)(練習(xí))(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線??級狠S小題全歸類(16大題型)(練習(xí))(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線常考壓軸小題全歸類(16大題型)(練習(xí))(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線??級狠S小題全歸類(16大題型)(練習(xí))(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線??級狠S小題全歸類(16大題型)(練習(xí))(解析版)_第5頁
已閱讀5頁,還剩43頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題17圓錐曲線??級狠S小題全歸類目錄01阿波羅尼斯圓與圓錐曲線 202蒙日圓 403阿基米德三角形 604仿射變換問題 1005圓錐曲線第二定義 1206焦半徑問題 1607圓錐曲線第三定義 1908定比點(diǎn)差法與點(diǎn)差法 2109切線問題 2510焦點(diǎn)三角形問題 2811焦點(diǎn)弦問題 3012圓錐曲線與張角問題 3213圓錐曲線與角平分線問題 3414圓錐曲線與通徑問題 3815圓錐曲線的光學(xué)性質(zhì)問題 4016圓錐曲線與四心問題 4301阿波羅尼斯圓與圓錐曲線1.(2024·江西贛州·統(tǒng)考模擬預(yù)測)阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)A,B的距離之比為SKIPIF1<0,那么點(diǎn)M的軌跡就是阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系中,圓SKIPIF1<0、點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,M為圓O上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由題知圓SKIPIF1<0是關(guān)于點(diǎn)A、C的阿波羅尼斯圓,且SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,整理得:SKIPIF1<0,比較兩方程可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,當(dāng)點(diǎn)M位于圖中SKIPIF1<0的位置時(shí),SKIPIF1<0的值最大,最大為SKIPIF1<0.故選:B.2.(2024·全國·高三專題練習(xí))已知平面內(nèi)兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0及動(dòng)點(diǎn)SKIPIF1<0,若SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則點(diǎn)SKIPIF1<0的軌跡是圓.后世把這種圓稱為阿波羅尼斯圓.已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0,直線SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的交點(diǎn),則SKIPIF1<0的最小值為(

)A.3SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由已知SKIPIF1<0過定點(diǎn)SKIPIF1<0,SKIPIF1<0過定點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為直徑的圓,除去SKIPIF1<0點(diǎn),故圓心為SKIPIF1<0,半徑為3,則SKIPIF1<0的軌跡方程為SKIPIF1<0,即SKIPIF1<0,易知O、Q在該圓內(nèi),又SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A.3.(2024·全國·校聯(lián)考模擬預(yù)測)阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得?阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0的距離之比為定值SKIPIF1<0,且SKIPIF1<0的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,則下列說法錯(cuò)誤的是(

)A.SKIPIF1<0的方程為SKIPIF1<0B.當(dāng)SKIPIF1<0三點(diǎn)不共線時(shí),則SKIPIF1<0C.在C上存在點(diǎn)M,使得SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,化簡得SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0三點(diǎn)不共線時(shí),SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的角平分線,所以SKIPIF1<0,故B正確;設(shè)SKIPIF1<0,則SKIPIF1<0,化簡得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以C上不存在點(diǎn)M,使得SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0在線段SKIPIF1<0上時(shí),等號(hào)成立,故D正確.故選:C.02蒙日圓4.(2024·青海西寧·統(tǒng)考)法國數(shù)學(xué)家加斯帕·蒙日被稱為“畫法幾何創(chuàng)始人”“微分幾何之父”.他發(fā)現(xiàn)與橢圓相切的兩條互相垂直的切線的交點(diǎn)的軌跡是以該橢圓中心為圓心的圓,這個(gè)圓被稱為該橢圓的蒙日圓.若橢圓:SKIPIF1<0(SKIPIF1<0)的蒙日圓為SKIPIF1<0,則橢圓Γ的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】如圖,SKIPIF1<0分別與橢圓相切,顯然SKIPIF1<0.所以點(diǎn)SKIPIF1<0在蒙日圓SKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以橢圓SKIPIF1<0的離心率SKIPIF1<0.故選:D5.(2024·陜西西安·長安一中??迹懊扇請A”涉及幾何學(xué)中的一個(gè)著名定理,該定理的內(nèi)容為:橢圓上兩條互相輸出垂直的切線的交點(diǎn)必在一個(gè)與橢圓同心的圓上,該圓稱為橢圓的蒙日圓.若橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,則橢圓C的蒙日圓的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)闄E圓SKIPIF1<0:SKIPIF1<0SKIPIF1<0的離心率為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即橢圓SKIPIF1<0的方程為SKIPIF1<0,于是橢圓的上頂點(diǎn)SKIPIF1<0,右頂點(diǎn)SKIPIF1<0,經(jīng)過SKIPIF1<0兩點(diǎn)的橢圓切線方程分別為SKIPIF1<0,SKIPIF1<0,則兩條切線的交點(diǎn)坐標(biāo)為SKIPIF1<0,顯然這兩條切線互相垂直,因此點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0的蒙日圓上,圓心為橢圓SKIPIF1<0的中心O,橢圓SKIPIF1<0的蒙日圓半徑SKIPIF1<0,所以橢圓SKIPIF1<0的蒙日圓方程為SKIPIF1<0.故選:B6.(2024·江西·統(tǒng)考模擬預(yù)測)定義:圓錐曲線SKIPIF1<0的兩條相互垂直的切線的交點(diǎn)SKIPIF1<0的軌跡是以坐標(biāo)原點(diǎn)為圓心,SKIPIF1<0為半徑的圓,這個(gè)圓稱為蒙日圓.已知橢圓SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0是直線SKIPIF1<0上的一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線與橢圓相切于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0是坐標(biāo)原點(diǎn),連接SKIPIF1<0,當(dāng)SKIPIF1<0為直角時(shí),則SKIPIF1<0(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D【解析】根據(jù)蒙日圓定義,圓SKIPIF1<0方程為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),聯(lián)立SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,即點(diǎn)SKIPIF1<0、SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0或SKIPIF1<0重合時(shí),SKIPIF1<0為直角,且SKIPIF1<0,SKIPIF1<0,所以,直線SKIPIF1<0的斜率為SKIPIF1<0或SKIPIF1<0.故選:D.03阿基米德三角形7.(2024·陜西銅川·統(tǒng)考)古希臘哲學(xué)家、百科式科學(xué)家阿基米德最早采用分割法求得橢圓的面積為橢圓的長半軸長和短半軸長乘積的SKIPIF1<0倍,這種方法已具有積分計(jì)算的雛形.已知橢圓SKIPIF1<0的面積為SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上的動(dòng)點(diǎn),則下列結(jié)論正確的是(

)①橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程可以為SKIPIF1<0

②若SKIPIF1<0,則SKIPIF1<0③存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0

④SKIPIF1<0的最小值為SKIPIF1<0A.①③ B.②④ C.②③ D.①④【答案】D【解析】對于①:由SKIPIF1<0,解得SKIPIF1<0,則橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,故①正確;對于②:由定義可知SKIPIF1<0,由余弦定理可得:SKIPIF1<0SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0,故②錯(cuò)誤;對于③:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,則不存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,故③錯(cuò)誤;對于④:SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故④正確;故選:D8.(2024·河北·校聯(lián)考)拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形稱為阿基米德三角形,在數(shù)學(xué)發(fā)展的歷史長河中,它不斷地閃煉出真理的光輝,這個(gè)兩千多年的古老圖形,蘊(yùn)藏著很多性質(zhì).已知拋物線SKIPIF1<0,過焦點(diǎn)的弦SKIPIF1<0的兩個(gè)端點(diǎn)的切線相交于點(diǎn)SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,且以SKIPIF1<0為直徑的圓過SKIPIF1<0點(diǎn)B.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,但以SKIPIF1<0為直徑的圓不過SKIPIF1<0點(diǎn)C.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,但以SKIPIF1<0為直徑的圓不過SKIPIF1<0點(diǎn)D.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,且以SKIPIF1<0為直徑的圓過SKIPIF1<0點(diǎn)【答案】D【解析】設(shè)SKIPIF1<0為拋物線SKIPIF1<0上一點(diǎn),當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得:SKIPIF1<0,在SKIPIF1<0處的切線方程為:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0;同理可得:當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0處的切線方程切線方程為SKIPIF1<0;經(jīng)檢驗(yàn),當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),切線方程為SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0過拋物線SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程為:SKIPIF1<0;設(shè)SKIPIF1<0,則拋物線在SKIPIF1<0處的切線方程為SKIPIF1<0和SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0滿足直線方程:SKIPIF1<0,又直線SKIPIF1<0過焦點(diǎn)SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上;AC錯(cuò)誤;由題意知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;設(shè)直線SKIPIF1<0方程為:SKIPIF1<0,由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0以SKIPIF1<0為直徑的圓過SKIPIF1<0點(diǎn);B錯(cuò)誤,D正確.故選:D.9.(2024·青海西寧·統(tǒng)考)拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形.阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的斜率之積為定值.設(shè)拋物線SKIPIF1<0,弦AB過焦點(diǎn),△ABQ為阿基米德三角形,則△ABQ的面積的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0且SKIPIF1<0,直線SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0.設(shè)過點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則過A的切線為:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,同理可得過點(diǎn)SKIPIF1<0的切線斜率為SKIPIF1<0,過點(diǎn)B的切線方程為:SKIPIF1<0,聯(lián)立兩切線SKIPIF1<0,則SKIPIF1<0,所以兩條切線的交點(diǎn)SKIPIF1<0在準(zhǔn)線上,則SKIPIF1<0,兩式相減得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,又因?yàn)橹本€SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0(SKIPIF1<0也成立),如圖,設(shè)準(zhǔn)線與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,SKIPIF1<0的面積SKIPIF1<0,當(dāng)SKIPIF1<0軸時(shí),SKIPIF1<0最短(最短為SKIPIF1<0),SKIPIF1<0也最短(最短為SKIPIF1<0),此時(shí)SKIPIF1<0的面積取最小值SKIPIF1<0.故選:B04仿射變換問題10.(2024·全國·高三專題練習(xí))已知橢圓SKIPIF1<0,SKIPIF1<0分別為橢圓左右焦點(diǎn),過SKIPIF1<0作兩條互相平行的弦,分別與橢圓交于SKIPIF1<0四點(diǎn),若當(dāng)兩條弦垂直于SKIPIF1<0軸時(shí),點(diǎn)SKIPIF1<0所形成的平行四邊形面積最大,則橢圓離心率的取值范圍為.【答案】SKIPIF1<0【解析】作仿射變換,令SKIPIF1<0,可得仿射坐標(biāo)系SKIPIF1<0,在此坐標(biāo)系中,上述橢圓變換為圓SKIPIF1<0,點(diǎn)SKIPIF1<0坐標(biāo)分別為SKIPIF1<0,過SKIPIF1<0作兩條平行的弦分別與圓交于SKIPIF1<0四點(diǎn).由平行四邊形性質(zhì)易知,三角形SKIPIF1<0的面積為SKIPIF1<0四點(diǎn)所形成的平行四邊形面積的SKIPIF1<0,故只需令三角形SKIPIF1<0面積的最大值在弦SKIPIF1<0與SKIPIF1<0軸垂直時(shí)取到即可.當(dāng)SKIPIF1<0時(shí),三角形SKIPIF1<0面積的最大值在弦SKIPIF1<0與SKIPIF1<0軸垂直時(shí)取到.故此題離心率的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.11.(2024·江蘇·高二專題練習(xí))已知橢圓SKIPIF1<0左頂點(diǎn)為SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上兩動(dòng)點(diǎn),直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直線SKIPIF1<0的斜率分別為SKIPIF1<0且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0是非零實(shí)數(shù)),求SKIPIF1<0.【答案】1【解析】解法1:可得點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩邊同乘以SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,將SKIPIF1<0代入橢圓方程可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,可得SKIPIF1<0;故答案為:SKIPIF1<0.解法2:作變換SKIPIF1<0之后橢圓變?yōu)閳A,方程為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.12.(2024·全國·高三專題練習(xí))如圖,作斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0在直線SKIPIF1<0的上方,則△SKIPIF1<0內(nèi)切圓的圓心所在的定直線方程為.【答案】SKIPIF1<0【解析】如圖,作仿射變換:SKIPIF1<0,橢圓變?yōu)镾KIPIF1<0,直線SKIPIF1<0的斜率SKIPIF1<0變?yōu)橹本€SKIPIF1<0的斜率SKIPIF1<0,SKIPIF1<0變?yōu)镾KIPIF1<0SKIPIF1<0,由垂徑定理SKIPIF1<0平分SKIPIF1<0,其方程為SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0△SKIPIF1<0內(nèi)切圓的圓心所在的定直線方程為SKIPIF1<0.故答案為:SKIPIF1<005圓錐曲線第二定義13.(2024·四川眉山·??寄M預(yù)測)已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0且斜率為SKIPIF1<0的直線交SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】設(shè)雙曲線SKIPIF1<0的右準(zhǔn)線為SKIPIF1<0,過SKIPIF1<0、SKIPIF1<0分別作SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,如圖所示:因?yàn)橹本€SKIPIF1<0的斜率為SKIPIF1<0,所以直線SKIPIF1<0的傾斜角為SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,由雙曲線的第二定義得:SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0故選:B14.(2024·江蘇南京·高三南京市第一中學(xué)??奸_學(xué)考試)已知以F為焦點(diǎn)的拋物線SKIPIF1<0上的兩點(diǎn)A,B,滿足SKIPIF1<0,則弦AB的中點(diǎn)到C的準(zhǔn)線的距離的最大值是(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】B【解析】解法1:拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則∵SKIPIF1<0,由拋物線定義可知SKIPIF1<0,∴SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,由①②可得:SKIPIF1<0所以SKIPIF1<0.∵SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,則弦AB的中點(diǎn)到C的準(zhǔn)線的距離SKIPIF1<0,d最大值是SKIPIF1<0.∴弦AB的中點(diǎn)到C的準(zhǔn)線的距離的最大值是SKIPIF1<0,故選:B.解法2:弦AB的中點(diǎn)到C的準(zhǔn)線的距離SKIPIF1<0,根據(jù)結(jié)論SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:B.15.(2024·全國·高三專題練習(xí))已知橢圓SKIPIF1<0=1內(nèi)有一點(diǎn)P(1,-1),F(xiàn)為橢圓的右焦點(diǎn),在橢圓上有一點(diǎn)M,使|MP|+2|MF|取得最小值,則點(diǎn)M坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】A【解析】因?yàn)闄E圓方程為SKIPIF1<0=1,所以橢圓得離心率SKIPIF1<0,設(shè)點(diǎn)M到橢圓右準(zhǔn)線的距離為d,根據(jù)橢圓第二定義有:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0表示橢圓上一點(diǎn)M到橢圓內(nèi)定點(diǎn)P和到橢圓右準(zhǔn)線的距離之和,當(dāng)SKIPIF1<0垂直于右準(zhǔn)線時(shí),SKIPIF1<0取得最小值.此時(shí)SKIPIF1<0的縱坐標(biāo)為-1,代入橢圓方程SKIPIF1<0=1,求得SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.所以點(diǎn)M坐標(biāo)為SKIPIF1<0,故B,C,D錯(cuò)誤.故選:A.16.(2024·山東濟(jì)寧·統(tǒng)考)過拋物線SKIPIF1<0焦點(diǎn)F的直線與該拋物線及其準(zhǔn)線都相交,交點(diǎn)從左到右依次為A,B,C.若SKIPIF1<0,則線段BC的中點(diǎn)到準(zhǔn)線的距離為(

)A.3 B.4 C.5 D.6【答案】B【解析】由拋物線的方程可得焦點(diǎn)SKIPIF1<0,漸近線的方程為:SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0由于拋物線的對稱性,不妨假設(shè)直線和拋物線位置關(guān)系如圖示:作SKIPIF1<0垂直于準(zhǔn)線于SKIPIF1<0,準(zhǔn)線交x軸與N,則SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0x軸,故SKIPIF1<0,所以直線SKIPIF1<0的傾斜角為SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,整理可得:SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0的中點(diǎn)的橫坐標(biāo)為3,則線段SKIPIF1<0的中點(diǎn)到準(zhǔn)線的距離為SKIPIF1<0,故選:B.06焦半徑問題17.(2024·安徽·高二統(tǒng)考期末)過拋物線SKIPIF1<0(a>0)的焦點(diǎn)F作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長分別為p、q,則SKIPIF1<0等于()A.2 B.SKIPIF1<0 C.SKIPIF1<0SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】拋物線SKIPIF1<0轉(zhuǎn)化成標(biāo)準(zhǔn)方程:SKIPIF1<0,SKIPIF1<0焦點(diǎn)SKIPIF1<0坐標(biāo)SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)過SKIPIF1<0的SKIPIF1<0直線方程為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,整理得SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由韋達(dá)定理可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)拋物線性質(zhì)可知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的值為SKIPIF1<0,故選:C.18.(2024·全國·高三專題練習(xí))長為11的線段AB的兩端點(diǎn)都在雙曲線SKIPIF1<0的右支上,則AB中點(diǎn)M的橫坐標(biāo)的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由雙曲線SKIPIF1<0可知,a=3,b=4,c=5,設(shè)AB中點(diǎn)M的橫坐標(biāo)為m,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)F、A、B共線且SKIPIF1<0不垂直SKIPIF1<0軸時(shí),m取得最小值,此時(shí)SKIPIF1<0.檢驗(yàn):如圖,當(dāng)F、A、B共線且SKIPIF1<0軸時(shí),SKIPIF1<0為雙曲線的通徑,則根據(jù)通徑公式得SKIPIF1<0,所以SKIPIF1<0軸不滿足題意.綜上,當(dāng)F、A、B共線且SKIPIF1<0不垂直SKIPIF1<0軸時(shí),m取得最小值,此時(shí)SKIPIF1<0.故選:B.19.(2024·全國·高三專題練習(xí))拋物線SKIPIF1<0的焦點(diǎn)弦被焦點(diǎn)分成長是m和n的兩部分,則m與n的關(guān)系是(

)A.m+n=mn B.m+n=4 C.mn=4 D.無法確定【答案】A【解析】拋物線的焦點(diǎn)SKIPIF1<0,準(zhǔn)線x=-1,設(shè)SKIPIF1<0,把它代入SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由拋物線定義可得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴m+n=mn.故選:A20.已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),SKIPIF1<0是該拋物線上的兩點(diǎn),SKIPIF1<0,則線段SKIPIF1<0的中點(diǎn)到SKIPIF1<0軸的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】拋物線的準(zhǔn)線為SKIPIF1<0,過SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,SKIPIF1<0的中點(diǎn)為SKIPIF1<0,過SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,因?yàn)镾KIPIF1<0是該拋物線上的兩點(diǎn),故SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0為梯形的中位線,所以SKIPIF1<0,故SKIPIF1<0到SKIPIF1<0軸的距離為SKIPIF1<0,故選C.07圓錐曲線第三定義21.(2024·貴州貴陽·高三統(tǒng)考期末)過拋物線SKIPIF1<0的焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),若SKIPIF1<0的中點(diǎn)的縱坐標(biāo)為2,則SKIPIF1<0等于(

)A.4 B.6 C.8 D.10【答案】C【解析】先根據(jù)拋物線的定義將焦點(diǎn)弦長問題轉(zhuǎn)化為中點(diǎn)到準(zhǔn)線距離的兩倍,進(jìn)而用中點(diǎn)橫坐標(biāo)表示,設(shè)直線AB的方程為:SKIPIF1<0(m為常數(shù)),與拋物線方程聯(lián)立消去SKIPIF1<0,得到關(guān)于y的一元二次方程,利用中點(diǎn)公式和韋達(dá)定理求得m的值,進(jìn)而得到中點(diǎn)的橫坐標(biāo),從而求得線段AB的長度.拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)F(1,0),準(zhǔn)線方程SKIPIF1<0,

設(shè)AB的中點(diǎn)為M,過A,B,M作準(zhǔn)線l的垂線,垂足分別為C,D,N,則MN為梯形ABDC的中位線,SKIPIF1<0,∵直線AB過拋物線的焦點(diǎn)F,∴可設(shè)直線AB的方程為:SKIPIF1<0(m為常數(shù)),代入拋物線的方程消去x并整理得:SKIPIF1<0,設(shè)A,B的縱坐標(biāo)分別為SKIPIF1<0,線段AB中點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴直線AB的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:C.22.(2024·河北石家莊·高三石家莊二中??奸_學(xué)考試)過橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線,且切線的斜率小于SKIPIF1<0,切點(diǎn)為SKIPIF1<0,交橢圓另一點(diǎn)SKIPIF1<0,若SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的斜率(

)A.為定值SKIPIF1<0 B.為定值SKIPIF1<0 C.為定值SKIPIF1<0 D.隨SKIPIF1<0變化而變化【答案】C【解析】設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,化簡可得SKIPIF1<0.因?yàn)镾KIPIF1<0是線段SKIPIF1<0的中點(diǎn),故SKIPIF1<0.代入化簡可得SKIPIF1<0的斜率SKIPIF1<0.又直線SKIPIF1<0與SKIPIF1<0垂直,故SKIPIF1<0,解得SKIPIF1<0,代入圓SKIPIF1<0可得SKIPIF1<0.故直線SKIPIF1<0的斜率為SKIPIF1<0為定值.故選:C23.(2024·陜西咸陽·統(tǒng)考)已知雙曲線SKIPIF1<0上存在兩點(diǎn)SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,且線段SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,SKIPIF1<0,根據(jù)線段SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0在雙曲線上,整理可得SKIPIF1<0,進(jìn)而可得到離心率.設(shè)SKIPIF1<0,SKIPIF1<0,且線段SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0在雙曲線上,SKIPIF1<0,SKIPIF1<0,相減可得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,離心率為SKIPIF1<0,故選:B.08定比點(diǎn)差法與點(diǎn)差法24.(2024·浙江溫州·高三溫州中學(xué)??茧A段練習(xí))如圖,P為橢圓SKIPIF1<0上的一動(dòng)點(diǎn),過點(diǎn)P作橢圓SKIPIF1<0的兩條切線PA,PB,斜率分別為SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0為定值,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0則過SKIPIF1<0的直線方程為SKIPIF1<0將直線方程與橢圓SKIPIF1<0聯(lián)立可得SKIPIF1<0化簡可得SKIPIF1<0因?yàn)橄嗲?所以判別式SKIPIF1<0展開得SKIPIF1<0同時(shí)除以SKIPIF1<0可得SKIPIF1<0合并可得SKIPIF1<0同除以SKIPIF1<0,得SKIPIF1<0展開化簡成關(guān)于SKIPIF1<0的方程可得SKIPIF1<0因?yàn)橛袃蓷l直線,所以有兩個(gè)不等的實(shí)數(shù)根.因?yàn)镾KIPIF1<0為定值,可設(shè)SKIPIF1<0由韋達(dá)定理,SKIPIF1<0化簡得SKIPIF1<0又因?yàn)镾KIPIF1<0在橢圓上,代入可得SKIPIF1<0化簡可得SKIPIF1<0則SKIPIF1<0,化簡可得SKIPIF1<0解得SKIPIF1<0故選:C25.(2024·江蘇南京·高二南京市秦淮中學(xué)校考期末)已知斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0(SKIPIF1<0),那么SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0,或SKIPIF1<0【答案】A【解析】先設(shè)SKIPIF1<0,SKIPIF1<0,再由點(diǎn)差法求出SKIPIF1<0,再由點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓內(nèi),求出SKIPIF1<0的范圍即可得解.設(shè)SKIPIF1<0,SKIPIF1<0,又點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓SKIPIF1<0上,則SKIPIF1<0,SKIPIF1<0,兩式相減可得:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,又點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓內(nèi),則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選:A.26.(2024·河北衡水·高三河北衡水中學(xué)??茧A段練習(xí))已知橢圓SKIPIF1<0內(nèi)有一定點(diǎn)SKIPIF1<0,過點(diǎn)P的兩條直線SKIPIF1<0,SKIPIF1<0分別與橢圓SKIPIF1<0交于A、C和B、D兩點(diǎn),且滿足SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0變化時(shí),直線CD的斜率總為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0.將SKIPIF1<0兩點(diǎn)坐標(biāo)代入橢圓方程并化簡得SKIPIF1<0,即SKIPIF1<0,同理SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,兩式相加得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選A.27.(2024·全國·高三專題練習(xí))設(shè)SKIPIF1<0、SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)A、SKIPIF1<0在橢圓上,若SKIPIF1<0,則點(diǎn)A的坐標(biāo)是.【答案】SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0【解析】橢圓SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則左焦點(diǎn)SKIPIF1<0,SKIPIF1<0,右焦點(diǎn)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0由點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓上,則有SKIPIF1<0解之得SKIPIF1<0,或SKIPIF1<0故有SKIPIF1<0或SKIPIF1<0即SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<009切線問題28.(2024·湖南長沙·高三雅禮中學(xué)??茧A段練習(xí))已知O為坐標(biāo)原點(diǎn),點(diǎn)P在標(biāo)準(zhǔn)單位圓上,過點(diǎn)P作圓C:SKIPIF1<0的切線,切點(diǎn)為Q,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】圓C的圓心為SKIPIF1<0,半徑SKIPIF1<0,標(biāo)準(zhǔn)單位圓的圓心為SKIPIF1<0,半徑SKIPIF1<0,因?yàn)镾KIPIF1<0,可知圓C與標(biāo)準(zhǔn)單位圓外離,即點(diǎn)P在圓C外,由題意可知:SKIPIF1<0,且SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0在線段SKIPIF1<0上時(shí),等號(hào)成立,所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.29.(2024·四川綿陽·高三四川省綿陽南山中學(xué)??茧A段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0為:SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0為SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作拋物線SKIPIF1<0的兩條切線SKIPIF1<0,其中SKIPIF1<0為切點(diǎn),則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/4.5【解析】設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,整理得到SKIPIF1<0,SKIPIF1<0恒成立.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0是方程SKIPIF1<0的兩個(gè)根,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論