新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題06 函數(shù)與導(dǎo)數(shù)常見經(jīng)典壓軸小題歸類(練習(xí))(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題06 函數(shù)與導(dǎo)數(shù)常見經(jīng)典壓軸小題歸類(練習(xí))(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題06 函數(shù)與導(dǎo)數(shù)常見經(jīng)典壓軸小題歸類(練習(xí))(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題06 函數(shù)與導(dǎo)數(shù)常見經(jīng)典壓軸小題歸類(練習(xí))(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題06 函數(shù)與導(dǎo)數(shù)常見經(jīng)典壓軸小題歸類(練習(xí))(原卷版)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

專題06函數(shù)與導(dǎo)數(shù)常見經(jīng)典壓軸小題歸類目錄01函數(shù)零點問題之分段分析法模型 302函數(shù)嵌套問題 703函數(shù)整數(shù)解問題 1104唯一零點求值問題 1405等高線問題 1606分段函數(shù)零點問題 1907函數(shù)對稱問題 2208零點嵌套問題 2609函數(shù)零點問題之三變量問題 3010倍值函數(shù) 3311函數(shù)不動點問題 3712函數(shù)的旋轉(zhuǎn)問題 4013構(gòu)造函數(shù)解不等式 4414導(dǎo)數(shù)中的距離問題 4815導(dǎo)數(shù)的同構(gòu)思想 5016不等式恒成立之分離參數(shù)、分離函數(shù)、放縮法 5317三次函數(shù)問題 5818切線條數(shù)、公切線、切線重合與垂直問題 6219任意存在性問題 6720雙參數(shù)最值問題 7021切線斜率與割線斜率 7222最大值的最小值問題(平口單峰函數(shù)、鉛錘距離) 7523兩邊夾問題和零點相同問題 7924函數(shù)的伸縮變換問題 8125V型函數(shù)和平底函數(shù) 8326曼哈頓距離與折線距離 8701函數(shù)零點問題之分段分析法模型1.(2023·黑龍江·高三大慶市東風(fēng)中學(xué)??计谥校┰O(shè)函數(shù)SKIPIF1<0(其中SKIPIF1<0為自然對數(shù)的底數(shù)),若函數(shù)SKIPIF1<0至少存在一個零點,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2023·湖北·高三校聯(lián)考期中)設(shè)函數(shù)SKIPIF1<0,記SKIPIF1<0,若函數(shù)SKIPIF1<0至少存在一個零點,則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(e為自然對數(shù)的底數(shù))有兩個不同零點,則實數(shù)SKIPIF1<0的取值范圍是___________.4.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0存在4個零點,則實數(shù)SKIPIF1<0的取值范圍是__________.02函數(shù)嵌套問題5.(2023·云南保山·高三統(tǒng)考期末)定義域為SKIPIF1<0的函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有5個不同的實數(shù)解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則所有實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之和為(

)A.12 B.16 C.20 D.246.(2023·全國·高三福建省福州第八中學(xué)校考期末)定義在SKIPIF1<0上函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0(其中SKIPIF1<0)有SKIPIF1<0個不同的實根SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023·四川廣安·高三四川省鄰水縣第二中學(xué)??茧A段練習(xí))設(shè)定義域為R的函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0有3個不同的實數(shù)解x1、x2、x3且x1<x2<x3,則下列說法中錯誤的是(

)A.SKIPIF1<0 B.1+a+b=0C.x1+x3=SKIPIF1<0 D.x1+x3>2x28.(2023·安徽亳州·高三安徽省亳州市第一中學(xué)??茧A段練習(xí))設(shè)定義域為R的函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0有且僅有三個不同的實數(shù)解SKIPIF1<0,且SKIPIF1<0.下列說法錯誤的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有6個不同的實數(shù)解,則SKIPIF1<0的取值情況不可能的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<003函數(shù)整數(shù)解問題10.(2023·黑龍江綏化·高三校考階段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0有且只有兩個整數(shù)解,則k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.(2023·全國·高三專題練習(xí))已知不等式SKIPIF1<0的解集中僅有2個整數(shù),則實數(shù)k的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.(2023·全國·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,若對任意的SKIPIF1<0,都有SKIPIF1<0成立,則整數(shù)a的最大值為(

)A.3 B.4 C.5 D.613.(2023·江蘇蘇州·高三校考)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在極值點,且SKIPIF1<0在R上恰好有唯一整數(shù)解,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<004唯一零點求值問題14.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有唯一零點,則負(fù)實數(shù)SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.-3 D.-215.(2023·全國·高三階段練習(xí))已知函數(shù)SKIPIF1<0有唯一零點,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.116.(2023·云南曲靖·高三曲靖一中校考階段練習(xí))已知函數(shù)SKIPIF1<0有唯一零點,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017.(2023·山西·高三統(tǒng)考)已知數(shù)列SKIPIF1<0的首項SKIPIF1<0,函數(shù)SKIPIF1<0有唯一零點,則通項SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<005等高線問題18.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若存在實數(shù)SKIPIF1<0,使得關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有三個互異的實數(shù)解,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<019.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有四個不等根SKIPIF1<0,則SKIPIF1<0的值是(

)A.0 B.2 C.4 D.820.(2023·寧夏·高三寧夏大學(xué)附屬中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0有四個不同實數(shù)解SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<021.(2023·湖北武漢·高一期末)已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有四個不同的實數(shù)解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.8 C.SKIPIF1<0 D.SKIPIF1<006分段函數(shù)零點問題22.(2023·四川綿陽·四川省綿陽南山中學(xué)??家荒#┮阎猄KIPIF1<0,函數(shù)SKIPIF1<0SKIPIF1<0,若SKIPIF1<0恰有2個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<023.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有三個零點,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<024.(2023·廣東廣州·高三廣州市真光中學(xué)校考期末)定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,則關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0的所有零點之和為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<025.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點個數(shù)是(

)A.4 B.5 C.6 D.707函數(shù)對稱問題26.(2023·陜西渭南·高三渭南市瑞泉中學(xué)??茧A段練習(xí))若直角坐標(biāo)平面內(nèi)SKIPIF1<0,SKIPIF1<0兩點滿足:①點SKIPIF1<0,SKIPIF1<0都在函數(shù)SKIPIF1<0的圖象上;②點SKIPIF1<0,SKIPIF1<0關(guān)于原點對稱,則稱點SKIPIF1<0是函數(shù)SKIPIF1<0的一個“姊妹點對”點對SKIPIF1<0與SKIPIF1<0可看作是同一個“姊妹點對”.已知函數(shù)SKIPIF1<0恰有兩個“姊妹點對”,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<027.(2023·湖南長沙·高三長沙市雅禮實驗中學(xué)??奸_學(xué)考試)若直角坐標(biāo)平面內(nèi)SKIPIF1<0兩點滿足條件:①點SKIPIF1<0都在SKIPIF1<0的圖像上;②點SKIPIF1<0關(guān)于原點對稱,則對稱點對SKIPIF1<0是函數(shù)的一個“兄弟點對”(點對SKIPIF1<0與SKIPIF1<0可看作一個“兄弟點對”SKIPIF1<0.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的“兄弟點對”的個數(shù)為(

)A.2 B.3 C.4 D.528.(2023·全國·高三專題練習(xí))若不同兩點SKIPIF1<0、SKIPIF1<0均在函數(shù)SKIPIF1<0的圖象上,且點SKIPIF1<0、SKIPIF1<0關(guān)于原點對稱,則稱SKIPIF1<0是函數(shù)SKIPIF1<0的一個“匹配點對”(點對SKIPIF1<0與SKIPIF1<0視為同一個“匹配點對”).已知SKIPIF1<0恰有兩個“匹配點對”,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<029.(2023·黑龍江哈爾濱·高一哈爾濱三中??计谥校┤艉瘮?shù)SKIPIF1<0圖象上存在不同的兩點SKIPIF1<0,SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,則稱點對SKIPIF1<0是函數(shù)SKIPIF1<0的一對“黃金點對”(注:點對SKIPIF1<0與SKIPIF1<0可看作同一對“黃金點對”).已知函數(shù)SKIPIF1<0則此函數(shù)的“黃金點對”有(

)A.0對 B.1對 C.2對 D.3對08零點嵌套問題30.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有三個不同的零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.1 B.3 C.4 D.931.(2023·重慶南岸·高三重慶市第十一中學(xué)校??茧A段練習(xí))設(shè)定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0有三個不同的零點SKIPIF1<0且SKIPIF1<0則SKIPIF1<0的值是(

)A.81 B.-81 C.9 D.-932.(2023·江西宜春·高三江西省豐城中學(xué)校考期中)已知函數(shù)SKIPIF1<0有三個不同的零點SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.3 B.6 C.9 D.3633.(2023·陜西·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0有三個不同的零點SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(

)A.3 B.4 C.9 D.1609函數(shù)零點問題之三變量問題34.(2023·全國·高二假期作業(yè))若存在兩個正實數(shù)SKIPIF1<0,SKIPIF1<0,使得等式SKIPIF1<0成立,其中SKIPIF1<0為自然對數(shù)的底數(shù),則實數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<035.(2023·全國·高三專題練習(xí))若存在正實數(shù)x,y,使得等式SKIPIF1<0成立,其中e為自然對數(shù)的底數(shù),則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<036.(2023·全國·高三專題練習(xí))若存在兩個正實數(shù)SKIPIF1<0,使得等式SKIPIF1<0成立,其中SKIPIF1<0為自然對數(shù)的底數(shù),則實數(shù)SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<037.(2023·全國·高三專題練習(xí))若存在兩個正實數(shù)SKIPIF1<0,SKIPIF1<0使等式SKIPIF1<0成立,其中SKIPIF1<0是自然對數(shù)的底數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<038.(2023·江西新余·統(tǒng)考二模)若存在兩個正數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,其中SKIPIF1<0,SKIPIF1<0為自然對數(shù)的底數(shù),則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010倍值函數(shù)39.(2023·寧夏銀川·高一??计谥校┖瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,若存在閉區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0同時滿足:(1)SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)函數(shù);(2)SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱區(qū)間SKIPIF1<0為SKIPIF1<0的“SKIPIF1<0倍值區(qū)間”.下列函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中存在“SKIPIF1<0倍值區(qū)間”的有(

)A.①③ B.②③ C.②④ D.①②③④40.(2023·安徽·高三統(tǒng)考期末)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若存在閉區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0滿足:①SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)函數(shù);②SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱區(qū)間SKIPIF1<0為SKIPIF1<0的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有①;②SKIPIF1<0;③;④A.①②③④ B.①②④ C.①③④ D.①③41.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,對給定的正數(shù)SKIPIF1<0,若存在閉區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0滿足:①SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)函數(shù);②SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱區(qū)間SKIPIF1<0為SKIPIF1<0的SKIPIF1<0級“理想?yún)^(qū)間”.下列結(jié)論錯誤的是(

)A.函數(shù)SKIPIF1<0(SKIPIF1<0)存在1級“理想?yún)^(qū)間”B.函數(shù)SKIPIF1<0(SKIPIF1<0)不存在2級“理想?yún)^(qū)間”C.函數(shù)SKIPIF1<0(SKIPIF1<0)存在3級“理想?yún)^(qū)間”D.函數(shù)SKIPIF1<0,SKIPIF1<0不存在4級“理想?yún)^(qū)間”42.(2023·全國·高三專題練習(xí))設(shè)函數(shù)的定義域為D,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則稱SKIPIF1<0為“倍縮函數(shù)”.若函數(shù)SKIPIF1<0為“倍縮函數(shù)”,則實數(shù)t的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011函數(shù)不動點問題43.(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,若曲線SKIPIF1<0上存在點SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<044.(2023·黑龍江齊齊哈爾·高一齊齊哈爾市恒昌中學(xué)校校考期中)在數(shù)學(xué)中,布勞威爾不動點定理是拓?fù)鋵W(xué)里一個非常重要的不動點定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動點定理的基石.布勞威爾不動點定理得名于荷蘭數(shù)學(xué)家魯伊茲?布勞威爾(L.E.J.Brouwer),簡單的講就是對于滿足一定條件的圖象不間斷的函數(shù)f(x),存在一個點x0,使得f(x0)=x0,那么我們稱該函數(shù)為“不動點“函數(shù).下列為“不動點”函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<045.(2023·山東菏澤·統(tǒng)考一模)定義在實數(shù)集SKIPIF1<0上的函數(shù)SKIPIF1<0,如果SKIPIF1<0,使得SKIPIF1<0,則稱SKIPIF1<0為函數(shù)SKIPIF1<0的不動點.給定函數(shù)SKIPIF1<0,SKIPIF1<0,已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上均存在唯一不動點,分別記為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012函數(shù)的旋轉(zhuǎn)問題46.(2023·上海浦東新·高三上海市建平中學(xué)校考開學(xué)考試)在平面直角坐標(biāo)系中,已知點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,將點SKIPIF1<0繞原點按逆時針方向旋轉(zhuǎn)角SKIPIF1<0得到點SKIPIF1<0,再將點SKIPIF1<0繞原點按逆時針方向旋轉(zhuǎn)角SKIPIF1<0得到SKIPIF1<0,…,如此繼續(xù)下去,得到前10個點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0.若SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,且點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0在同一函數(shù)圖像上,則角SKIPIF1<0的取值可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<047.(2023·上海浦東新·高二上海市實驗學(xué)校校考開學(xué)考試)2021年第十屆中國花卉博覽會舉辦在即,其中,以“蝶戀花”為造型的世紀(jì)館引人矚目(如圖①),而美妙的蝴蝶輪廓不僅帶來生活中的賞心悅目,也展示了極致的數(shù)學(xué)美學(xué)世界.數(shù)學(xué)家曾借助三角函數(shù)得到了蝴蝶曲線的圖像,探究如下:如圖②,平面上有兩定點SKIPIF1<0,兩動點SKIPIF1<0,且SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)到SKIPIF1<0所形成的角記為SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0令SKIPIF1<0,作SKIPIF1<0,隨著SKIPIF1<0的變化,就得到了點SKIPIF1<0的軌跡,其形似“蝴蝶”,則以下4幅圖中,點SKIPIF1<0的軌跡(考慮蝴蝶的朝向)最有可能為(

)A. B.C. D.48.(2023·全國·高三專題練習(xí))將函數(shù)SKIPIF1<0的圖象繞點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0,得到曲線SKIPIF1<0,對于每一個旋轉(zhuǎn)角SKIPIF1<0,曲線SKIPIF1<0都是一個函數(shù)的圖象,則SKIPIF1<0最大時的正切值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013構(gòu)造函數(shù)解不等式49.(2023·江蘇·高二專題練習(xí))已知定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則關(guān)于x的不等式SKIPIF1<0的解集為(

)A.(4,+∞) B.(-∞,4) C.(-∞,3) D.(3,+∞)50.(2023·江蘇·高二專題練習(xí))函數(shù)SKIPIF1<0定義域為R,導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0滿足下列條件:①任意SKIPIF1<0,SKIPIF1<0恒成立,②SKIPIF1<0時,SKIPIF1<0恒成立,則關(guān)于t的不等式:SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<051.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<052.(2023·全國·高二專題練習(xí))已知定義域為SKIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0為函數(shù)SKIPIF1<0的導(dǎo)函數(shù)),則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<053.(2023·全國·高二專題練習(xí))已知定義在R上的可導(dǎo)函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,滿足SKIPIF1<0且SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),若SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<054.(2023·遼寧沈陽·高三沈陽鐵路實驗中學(xué)??计谥校┰O(shè)SKIPIF1<0為函數(shù)SKIPIF1<0的導(dǎo)函數(shù),已知SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0在SKIPIF1<0既有極大值又有極小值 B.SKIPIF1<0在SKIPIF1<0既無極大值又無極小值C.SKIPIF1<0在SKIPIF1<0上有極大值 D.SKIPIF1<0在SKIPIF1<0上有極小值14導(dǎo)數(shù)中的距離問題55.(2023·重慶·重慶南開中學(xué)??家荒#┤魧θ我獾膶崝?shù)SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<056.(2023·四川綿陽·統(tǒng)考一模)若存在實數(shù)SKIPIF1<0,使得關(guān)于SKIPIF1<0的不等式SKIPIF1<0(其中SKIPIF1<0為自然對數(shù)的底數(shù))成立,則實數(shù)SKIPIF1<0的取值集合為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<057.(2023·高二單元測試)設(shè)點SKIPIF1<0為圓SKIPIF1<0上的任意一點,點SKIPIF1<0SKIPIF1<0,則線段SKIPIF1<0長度的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<058.(2023·重慶·高二校聯(lián)考階段練習(xí))若實數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是自然對數(shù)底數(shù)),則SKIPIF1<0最小值為A.SKIPIF1<0 B.5 C.SKIPIF1<0 D.1015導(dǎo)數(shù)的同構(gòu)思想59.(2023·河南·高三洛陽市第一高級中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0有兩個不同的零點,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<060.(2023·全國·安陽市第二中學(xué)校聯(lián)考模擬預(yù)測)已知關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則正數(shù)m的最大值為(

)A.SKIPIF1<0 B.0 C.e D.161.(2023·河南洛陽·高三新安縣第一高級中學(xué)??奸_學(xué)考試)已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<062.(2023·寧夏石嘴山·高三平羅中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,在區(qū)間SKIPIF1<0內(nèi)任取兩個實數(shù)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,若不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<016不等式恒成立之分離參數(shù)、分離函數(shù)、放縮法63.(2023·陜西安康·統(tǒng)考二模)已知SKIPIF1<0恒成立,則λ的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<064.(2023·江西·高三校聯(lián)考開學(xué)考試)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恒小于0,則實數(shù)SKIPIF1<0的取值集合是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<065.(2023·遼寧盤錦·盤錦市高級中學(xué)??家荒#┮阎瘮?shù)SKIPIF1<0,若對于任意的實數(shù)SKIPIF1<0恒有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<066.(2023·全國·高三專題練習(xí))若存在SKIPIF1<0使對于任意SKIPIF1<0不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<017三次函數(shù)問題67.(2023·河南·統(tǒng)考三模)已知SKIPIF1<0SKIPIF1<0為三次函數(shù),其圖象如圖所示.若SKIPIF1<0有9個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<068.(2023·全國·高三專題練習(xí))韋達是法國杰出的數(shù)學(xué)家,其貢獻之一是發(fā)現(xiàn)了多項式方程根與系數(shù)的關(guān)系,如:設(shè)一元三次方程SKIPIF1<0的3個實數(shù)根為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.已知函數(shù)SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0的圖象相切于點SKIPIF1<0,且交SKIPIF1<0的圖象于另一點SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<069.(2023·重慶渝中·重慶巴蜀中學(xué)??寄M預(yù)測)為響應(yīng)國家精準(zhǔn)扶貧政策,某工作組要在村外一湖岸邊修建一段道路(如圖中虛線處),要求該道路與兩條直線道路平滑連接(注:兩直線道路:SKIPIF1<0,SKIPIF1<0分別與該曲線相切于SKIPIF1<0,SKIPIF1<0,已知該彎曲路段為三次函數(shù)圖象的一部分,則該解析式為(

).A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<070.(2023·上海浦東新·高三上海市實驗學(xué)校校考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若三次函數(shù)SKIPIF1<0有三個零點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<018切線條數(shù)、公切線、切線重合與垂直問題71.(2023·全國·高三專題練習(xí))已知曲線SKIPIF1<0與SKIPIF1<0的兩條公切線所成角的正切值為SKIPIF1<0,則SKIPIF1<0(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<072.(2023·全國·高二專題練習(xí))若過點SKIPIF1<0可以作曲線SKIPIF1<0的三條切線,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<073.(2023·全國·高二專題練習(xí))過直線SKIPIF1<0上一點SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則點SKIPIF1<0橫坐標(biāo)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<074.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0與SKIPIF1<0的圖象存在公共切線,則實數(shù)a的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<075.(2023·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0的圖象上存在兩個不同的點SKIPIF1<0,SKIPIF1<0,使得曲線SKIPIF1<0在這兩點處的切線重合,則稱函數(shù)SKIPIF1<0為“自重合”函數(shù).下列函數(shù)中既是奇函數(shù)又是“自重合”函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<076.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0圖象上存在兩條互相垂直的切線,且SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<019任意存在性問題77.(2023·全國·高三專題練習(xí))定義:設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上也存在導(dǎo)函數(shù),則稱函數(shù)SKIPIF1<0在SKIPIF1<0上存在二階導(dǎo)函數(shù),簡記為SKIPIF1<0.若在區(qū)間SKIPIF1<0上SKIPIF1<0,則稱函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為“凹函數(shù)”.已知SKIPIF1<0在區(qū)間SKIPIF1<0上為“凹函數(shù)”,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<078.(2023·黑龍江·黑龍江實驗中學(xué)??家荒#┮阎瘮?shù)SKIPIF1<0,若存在SKIPIF1<0使得關(guān)于SKIPIF1<0的不等式SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<079.(2023·天津武清·高三天津市武清區(qū)楊村第一中學(xué)??奸_學(xué)考試)已知函數(shù)SKIPIF1<0,若存在實數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<020雙參數(shù)最值問題80.(2023·湖北黃岡·黃岡中學(xué)校考模擬預(yù)測)已知不等式SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)對任意實數(shù)SKIPIF1<0恒成立,則SKIPIF1<0的最大值為____________.81.(2023·全國·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的最大值為______.82.(2023·江蘇揚州·高三校聯(lián)考期末)已知關(guān)于SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0時,關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為______.83.(2023·重慶九龍坡·高一重慶市楊家坪中學(xué)??茧A段練習(xí))已知SKIPIF1<0,若SKIPIF1<0時,關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為________84.(2023·上海浦東新·高一上海市進才中學(xué)??计谥校┮阎猄KIPIF1<0,且SKIPIF1<0,若對SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的最大值為___.21切線斜率與割線斜率85.(2023·山東臨沂·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0是定義在R上的函數(shù),且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),SKIPIF1<0SKIPIF1<0,記SKIPIF1<0,若對于任意的SKIPIF1<0,都有SKIPIF1<0,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<086.(2023·湖北武漢·高一湖北省水果湖高級中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0?SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),其中SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,若對于任意SKIPIF1<0,都有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<087.(2023·湖北黃岡·高一??计谥校┮阎瘮?shù)SKIPIF1<0是定義在R上的函數(shù),其中SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,若對于任意SKIPIF1<0,都有SKIPIF1<0,則實數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<088.(2023·河南信陽·高三校考階段練習(xí))已知函數(shù)SKIPIF1<0是定義在R上的函數(shù),其中SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),且SKIPIF1<0,若對于任意SKIPIF1<0,都有SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<022最大值的最小值問題(平口單峰函數(shù)、鉛錘距離)89.(2023·高一課時練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0的最大值為SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.190.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0,若SKIPIF1<0的最小值為4,則實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<091.(2023·江西宜春·校聯(lián)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,且SKIPIF1<0,滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,設(shè)函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<092.(2023·高二課時練習(xí))設(shè)SKIPIF1<0(SKIPIF1<0),當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.293.(2023·浙江杭州·校聯(lián)考二模)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值SKIPIF1<0的最小值為4,則符合條件的SKIPIF1<0有(

)①x2+SKIPIF1<0②SKIPIF1<0③SKIPIF1<0A.①② B.②③ C.①②③ D.①③23兩邊夾問題和零點相同問題94.(2023·河北石家莊·高一??茧A段練習(xí))已知SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0是自然對數(shù)的底數(shù),則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<095.(2023·全國·高三專題練習(xí))若不等式SKIPIF1<0對SKIPIF1<0恒成立,則SKIPIF1<0的值等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.296.(2023·浙江·高一期末)若不等式SKIPIF1<0對SKIPIF1<0上恒成立,則SKIPIF1<0(

)A.SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論