河北省石家莊市河正定中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第1頁
河北省石家莊市河正定中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第2頁
河北省石家莊市河正定中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第3頁
河北省石家莊市河正定中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第4頁
河北省石家莊市河正定中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省石家莊市河正定中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.2.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.13.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.4.已知點是拋物線的對稱軸與準(zhǔn)線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.5.甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.56.已知直線:()與拋物線:交于(坐標(biāo)原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.7.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.18.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.9.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人10.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或711.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.14.若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_____15.過動點作圓:的切線,其中為切點,若(為坐標(biāo)原點),則的最小值是__________.16.的展開式中的系數(shù)為________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等差數(shù)列的前項和為,已知,.(Ⅰ)求數(shù)列的通項公式及前項和為;(Ⅱ)設(shè)為數(shù)列的前項的和,求證:.18.(12分)數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè),為的前n項和,求證:.19.(12分)設(shè)拋物線過點.(1)求拋物線C的方程;(2)F是拋物線C的焦點,過焦點的直線與拋物線交于A,B兩點,若,求的值.20.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.21.(12分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點,成等差數(shù)列,且,求a的值.22.(10分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的除法運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.2、B【解析】

,選B.3、D【解析】

根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.4、B【解析】

設(shè),利用兩點間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時的點坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因為是拋物線的對稱軸與準(zhǔn)線的交點,點為拋物線的焦點,所以,則,當(dāng)時,,當(dāng)時,,當(dāng)且僅當(dāng)時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.5、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.6、D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達(dá)定理,再由直線與拋物線的交點求出點坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.7、B【解析】

由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.8、C【解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】

先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎(chǔ)題.10、C【解析】

根據(jù)平面向量數(shù)量積的坐標(biāo)運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.11、B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.12、B【解析】

因為,所以,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運算即可得到答案.【詳解】以A為坐標(biāo)原點,AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運算求解能力,是一道中檔題.14、2025【解析】

利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.15、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.16、【解析】

在二項展開式的通項中令的指數(shù)為,求出參數(shù)值,然后代入通項可得出結(jié)果.【詳解】的展開式的通項為,令,因此,的展開式中的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,涉及二項展開式通項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)等差數(shù)列公式直接計算得到答案.(Ⅱ),根據(jù)裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數(shù)列的基本量的計算,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.18、(1)(2)證明見解析【解析】

(1)利用與的關(guān)系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當(dāng)時,;當(dāng),,可得,又∵當(dāng)時也成立,;(2),【點睛】本題主要考查了與的關(guān)系、裂項求和法,屬于基礎(chǔ)題.19、(1)(2)【解析】

(1)代入計算即可.(2)設(shè)直線AB的方程為,再聯(lián)立直線與拋物線的方程,消去可得的一元二次方程,再根據(jù)韋達(dá)定理與求解,進(jìn)而利用弦長公式求解即可.【詳解】解:(1)因為拋物線過點,所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設(shè)直線AB的方程為,,.因為,所以,聯(lián)立,化簡得,所以,,所以,,解得,所以.【點睛】本題考查拋物線的方程以及聯(lián)立直線與拋物線求弦長的簡單應(yīng)用.屬于基礎(chǔ)題.20、(1)(2)【解析】分析:(1)先求導(dǎo),再令在上恒成立,得到上恒成立,利用基本不等式得到m的取值范圍.(2)先由得到,再求得,再構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.詳解:(1)由函數(shù)有意義,則由且不存在單調(diào)遞減區(qū)間,則在上恒成立,上恒成立(2)由知,令,即由有兩個極值點故為方程的兩根,,,則由由,則上單調(diào)遞減,即由知綜上所述,的最小值為.點睛:(1)本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值,考查利用導(dǎo)數(shù)求函數(shù)的最值,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)本題的難點有兩個,其一是求出,其二是構(gòu)造函數(shù)再利用導(dǎo)數(shù)求其最小值.21、(1),(2)【解析】

(1)利用向量的數(shù)量積和二倍角公式化簡得,故可求其周期與單調(diào)性;(2)根據(jù)圖像過得到,故可求得的大小,再根據(jù)數(shù)量積得到的乘積,最后結(jié)合余弦定理和構(gòu)建關(guān)于的方程即可.【詳解】(1),最小正周期:,由得,所以的單調(diào)遞增區(qū)間為;(2)由可得:,所以.又因為成等差數(shù)列,所以而,.22、(Ⅰ)詳見解析;(Ⅱ)1.【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論