版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆陽(yáng)江市重點(diǎn)中學(xué)高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.連接雙曲線及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為()A. B. C. D.2.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.3.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.4.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或5.在中,內(nèi)角所對(duì)的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列6.已知集合,則()A. B. C. D.7.若的展開(kāi)式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.18.下列不等式正確的是()A. B.C. D.9.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.10.若向量,,則與共線的向量可以是()A. B. C. D.11.在長(zhǎng)方體中,,則直線與平面所成角的余弦值為()A. B. C. D.12.已知集合的所有三個(gè)元素的子集記為.記為集合中的最大元素,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知各項(xiàng)均為正數(shù)的等比數(shù)列的前項(xiàng)積為,,(且),則__________.14.已知集合,若,則__________.15.已知實(shí)數(shù),滿足約束條件則的最大值為_(kāi)_______.16.已知向量,,且,則實(shí)數(shù)m的值是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)平面直角坐標(biāo)系中,曲線:.直線經(jīng)過(guò)點(diǎn),且傾斜角為,以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點(diǎn),且,求實(shí)數(shù)的值.18.(12分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績(jī),統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示:等級(jí)不合格合格得分頻數(shù)624(Ⅰ)若測(cè)試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識(shí)有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再?gòu)倪@人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來(lái)評(píng)估該校安全教育活動(dòng)的成效,若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無(wú)效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.19.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點(diǎn),連接,為的中點(diǎn),連接.(1)求證:.(2)求二面角的余弦值.20.(12分)如圖,四棱錐,側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動(dòng)點(diǎn),且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.21.(12分)某房地產(chǎn)開(kāi)發(fā)商在其開(kāi)發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開(kāi)發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長(zhǎng)度設(shè)計(jì)到最長(zhǎng),求的最大值.22.(10分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4于兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問(wèn)題,涉及到的知識(shí)點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡(jiǎn)單題目.2、B【解析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡(jiǎn),即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.4、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.5、C【解析】
由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.6、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于基礎(chǔ)題.7、B【解析】
由,進(jìn)而分別求出展開(kāi)式中的系數(shù)及展開(kāi)式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開(kāi)式中的系數(shù)為,展開(kāi)式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.8、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問(wèn)題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)椋?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.10、B【解析】
先利用向量坐標(biāo)運(yùn)算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對(duì)應(yīng),縱坐標(biāo)與縱坐標(biāo)對(duì)應(yīng),切不可錯(cuò)位.11、C【解析】
在長(zhǎng)方體中,得與平面交于,過(guò)做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長(zhǎng)方體中,平面即為平面,過(guò)做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點(diǎn)睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.12、B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個(gè)元素子集的個(gè)數(shù),即可得解.【詳解】集合含有個(gè)元素的子集共有,所以.在集合中:最大元素為的集合有個(gè);最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點(diǎn)睛】此題考查集合相關(guān)的新定義問(wèn)題,其本質(zhì)在于弄清計(jì)數(shù)原理,分類討論,分別求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用等比數(shù)列的性質(zhì)求得,進(jìn)而求得,再利用對(duì)數(shù)運(yùn)算求得的值.【詳解】由于,,所以,則,∴,,.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.14、1【解析】
分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無(wú)序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿足互異性.15、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.16、1【解析】
根據(jù)即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點(diǎn)睛】本題考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運(yùn)算.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】
試題分析:本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),用,化簡(jiǎn)表達(dá)式,得到曲線的極坐標(biāo)方程,由已知點(diǎn)和傾斜角得到直線的參數(shù)方程;第二問(wèn),直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點(diǎn):本題主要考查:1.極坐標(biāo)方程,參數(shù)方程與直角方程的相互轉(zhuǎn)化;2.直線與拋物線的位置關(guān)系.18、(Ⅰ)詳見(jiàn)解析;(Ⅱ)詳見(jiàn)解析;(Ⅲ)不需要調(diào)整安全教育方案.【解析】
(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計(jì)算出的值,由此判斷出在犯錯(cuò)誤概率不超過(guò)的前提下,不能認(rèn)為性別與安全測(cè)試是否合格有關(guān).(II)利用超幾何分布的計(jì)算公式,計(jì)算出的分布列并求得數(shù)學(xué)期望.(III)由(II)中數(shù)據(jù),計(jì)算出,進(jìn)而求得的值,從而得出該校的安全教育活動(dòng)是有效的,不需要調(diào)整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學(xué)生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為:是否合格性別不合格合格小計(jì)男生女生小計(jì)即在犯錯(cuò)誤概率不超過(guò)的前提下,不能認(rèn)為性別與安全測(cè)試是否合格有關(guān).(Ⅱ)“不合格”和“合格”的人數(shù)比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為,.的分布列為:20151050所以.(Ⅲ)由(Ⅱ)知:.故我們認(rèn)為該校的安全教育活動(dòng)是有效的,不需要調(diào)整安全教育方案.【點(diǎn)睛】本小題主要考查列聯(lián)表獨(dú)立性檢驗(yàn),考查超幾何分布的分布列、數(shù)學(xué)期望和方差的計(jì)算,所以中檔題.19、(1)見(jiàn)解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點(diǎn),,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個(gè)法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.20、(1)見(jiàn)解析;(II).【解析】
試題分析:(1)取中點(diǎn),連結(jié),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能證明為直角三角形;(2)設(shè),由,得,求出平面的法向量和平面的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.試題解析:(I)取中點(diǎn),連結(jié),依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因?yàn)?所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,則,由可得點(diǎn)的坐標(biāo)所以,設(shè)平面的法向量為,則,即解得,令,得,顯然平面的一個(gè)法向量為,依題意,解得或(舍去),所以,當(dāng)時(shí),二面角的余弦
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鋁合金門窗工程勞務(wù)分包合同示范文本4篇
- 2025年環(huán)保型環(huán)衛(wèi)車輛及設(shè)備采購(gòu)合同3篇
- 2025年度苗圃技術(shù)員苗木市場(chǎng)分析與營(yíng)銷服務(wù)合同3篇
- 2025年度數(shù)字經(jīng)濟(jì)園區(qū)承包經(jīng)營(yíng)合同示范文本4篇
- 商業(yè)安全生產(chǎn)的文化塑造與實(shí)踐
- 2025版新能源發(fā)電項(xiàng)目工程監(jiān)理合同4篇
- 2025版五金配件進(jìn)出口貿(mào)易合同樣本3篇
- 二零二五年度酒店餐飲服務(wù)合同范本
- 2025年智能櫥柜研發(fā)與制造合作協(xié)議4篇
- 2025年度酒吧吧臺(tái)承包與酒吧市場(chǎng)調(diào)研與分析合同4篇
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)標(biāo)準(zhǔn)卷
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 臨床三基考試題庫(kù)(附答案)
- 人員密集場(chǎng)所消防安全管理培訓(xùn)
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹(shù)脂耐腐蝕立式貯罐
- 典范英語(yǔ)2b課文電子書
- 員工信息登記表(標(biāo)準(zhǔn)版)
- 春節(jié)工地停工復(fù)工計(jì)劃安排( 共10篇)
- 新教材人教版高中物理選擇性必修第二冊(cè)全冊(cè)各章節(jié)課時(shí)練習(xí)題及章末測(cè)驗(yàn)含答案解析(安培力洛倫茲力電磁感應(yīng)交變電流等)
- 中考數(shù)學(xué)試題(含答案)共12套
- 初級(jí)養(yǎng)老護(hù)理員培訓(xùn)全套
評(píng)論
0/150
提交評(píng)論