版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省肇慶學(xué)院附屬中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中,點在邊上,平分,若,,,,則()A. B. C. D.2.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.3.設(shè)全集U=R,集合,則()A. B. C. D.4.已知集合,則集合()A. B. C. D.5.已知雙曲線()的漸近線方程為,則()A. B. C. D.6.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.27.已知,且,則在方向上的投影為()A. B. C. D.8.已知正項等比數(shù)列的前項和為,則的最小值為()A. B. C. D.9.已知集合,,則A. B. C. D.10.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標(biāo)原點),則雙曲線的離心率為()A. B. C. D.11.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.412.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是___14.已知,則滿足的的取值范圍為_______.15.設(shè)點P在函數(shù)的圖象上,點Q在函數(shù)的圖象上,則線段PQ長度的最小值為_________16.已知點P是直線y=x+1上的動點,點Q是拋物線y=x2上的動點.設(shè)點M為線段PQ的中點,O為原點,則三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為坐標(biāo)原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標(biāo)為,.(1)求動點的軌跡曲線的標(biāo)準(zhǔn)方程及拋物線的標(biāo)準(zhǔn)方程;(2)若拋物線的準(zhǔn)線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.18.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當(dāng)時,,求此時的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.19.(12分)為響應(yīng)“堅定文化自信,建設(shè)文化強國”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺計劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機抽取了120名學(xué)生做調(diào)查,統(tǒng)計結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學(xué)和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系?男生女生總計喜歡閱讀中國古典文學(xué)不喜歡閱讀中國古典文學(xué)總計(2)為做好文化建設(shè)引領(lǐng),實驗組把該校作為試點,和該校的學(xué)生進行中國古典文學(xué)閱讀交流.實驗人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.20.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標(biāo)原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數(shù).21.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.22.(10分)一酒企為擴大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設(shè)計,可使得發(fā)酵館占地面積最小.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.2、D【解析】
設(shè)圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設(shè)圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關(guān)鍵;屬于中檔題.3、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.4、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.5、A【解析】
根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.6、B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.7、C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.8、D【解析】
由,可求出等比數(shù)列的通項公式,進而可知當(dāng)時,;當(dāng)時,,從而可知的最小值為,求解即可.【詳解】設(shè)等比數(shù)列的公比為,則,由題意得,,得,解得,得.當(dāng)時,;當(dāng)時,,則的最小值為.故選:D.【點睛】本題考查等比數(shù)列的通項公式的求法,考查等比數(shù)列的性質(zhì),考查學(xué)生的計算求解能力,屬于中檔題.9、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進行運算.10、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).11、D【解析】可以是共4個,選D.12、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當(dāng)時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡14、【解析】
將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).【點睛】本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性.15、【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對稱,則點到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因為與互為反函數(shù),則圖象關(guān)于對稱,設(shè)點為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時,,即單調(diào)遞減;當(dāng)時,,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問題.16、3【解析】
過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當(dāng)直線相切時距離最小,計算得到答案.【詳解】如圖所示:過點Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點M為線段PQ的中點,故M在直線y=x+38時距離最小,故故答案為:32【點睛】本題考查了拋物線中距離的最值問題,轉(zhuǎn)化為切線問題是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)曲線的標(biāo)準(zhǔn)方程為.拋物線的標(biāo)準(zhǔn)方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點P的軌跡W是橢圓,寫出橢圓的標(biāo)準(zhǔn)方程,根據(jù)平面向量數(shù)量積運算和點A在拋物線上求出拋物線C的標(biāo)準(zhǔn)方程;(2)設(shè)出點P的坐標(biāo),再表示出點N和Q的坐標(biāo),根據(jù)題意求出的值,即可判斷結(jié)果是否成立.【詳解】(1)由題知,,所以,因此動點的軌跡是以,為焦點的橢圓,又知,,所以曲線的標(biāo)準(zhǔn)方程為.又由題知,所以,所以,又因為點在拋物線上,所以,所以拋物線的標(biāo)準(zhǔn)方程為.(2)設(shè),,由題知,所以,即,所以,又因為,,所以,所以為定值,且定值為1.【點睛】本題考查了圓錐曲線的定義與性質(zhì)的應(yīng)用問題,考查拋物線的幾何性質(zhì)及點在曲線上的代換,也考查了推理與運算能力,是中檔題.18、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經(jīng)驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應(yīng)用,解題時要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進行求解.解題時要注意三角形邊角關(guān)系的運用,同時還要注意所得結(jié)果要符合實際意義.19、(1)見解析,沒有(2)見解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計算公式,計算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計喜歡閱讀中國古典文學(xué)423072不喜歡閱讀中國古典文學(xué)301848總計7248120所以,沒有的把握認(rèn)為喜歡閱讀中國古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會的男生中喜歡中國古典文學(xué)的人數(shù)為,女生中喜歡古典文學(xué)的人數(shù)為,則.且;;.所以的分布列為則.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查隨機變量分布列和數(shù)學(xué)期望的求法,考查數(shù)據(jù)處理能力,屬于中檔題.20、(1)(2)證明見解析【解析】
(1)根據(jù)條件可得,進而得到,即可得到橢圓方程;(2)設(shè)直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關(guān)系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 當(dāng)幸福來敲門觀后感合集15篇
- 巾幗標(biāo)兵先進事跡材料集錦15篇
- 感恩父母講話稿(集合15篇)
- 扭轉(zhuǎn)治療分享會
- 培訓(xùn)學(xué)校招生宣傳
- 初級金融專業(yè)-《金融專業(yè)知識與實務(wù)》名師預(yù)測卷1117
- 初級會計經(jīng)濟法基礎(chǔ)-初級會計《經(jīng)濟法基礎(chǔ)》預(yù)測試卷325
- 智研咨詢發(fā)布-2024年中國曲軸行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預(yù)測報告
- 產(chǎn)業(yè)研究報告-2024年中國磁懸浮軸承行業(yè)發(fā)展現(xiàn)狀、市場規(guī)模、投資前景分析(智研咨詢)
- 二零二五年度家居定制銷售購銷合同(含設(shè)計服務(wù))2篇
- 2025屆山東省德州市物理高三第一學(xué)期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級上學(xué)期語文期末復(fù)習(xí)習(xí)題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學(xué)英語六年級下冊全冊教案
- 汽車噴漆勞務(wù)外包合同范本
- 微項目 探討如何利用工業(yè)廢氣中的二氧化碳合成甲醇-2025年高考化學(xué)選擇性必修第一冊(魯科版)
- 廣東省廣州市黃埔區(qū)2024-2025學(xué)年八年級物理上學(xué)期教學(xué)質(zhì)量監(jiān)測試題
- 2024年重慶南開(融僑)中學(xué)中考三模英語試題含答案
- 財務(wù)管理學(xué)(第10版)課件 第1章 總論
- 《鼻咽癌的診治》課件
- 16J914-1 公用建筑衛(wèi)生間
評論
0/150
提交評論