2024屆江蘇省海安縣東片重點名校中考數(shù)學(xué)全真模擬試題含解析_第1頁
2024屆江蘇省海安縣東片重點名校中考數(shù)學(xué)全真模擬試題含解析_第2頁
2024屆江蘇省海安縣東片重點名校中考數(shù)學(xué)全真模擬試題含解析_第3頁
2024屆江蘇省海安縣東片重點名校中考數(shù)學(xué)全真模擬試題含解析_第4頁
2024屆江蘇省海安縣東片重點名校中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省海安縣東片重點名校中考數(shù)學(xué)全真模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個兩位數(shù),它的十位數(shù)字是3,個位數(shù)字是拋擲一枚質(zhì)地均勻的骰子(六個面分別標有數(shù)字1﹣6)朝上一面的數(shù)字,任意拋擲這枚骰子一次,得到的兩位數(shù)是3的倍數(shù)的概率等于()A. B. C. D.2.某市今年1月份某一天的最高氣溫是3℃,最低氣溫是—4℃,那么這一天的最高氣溫比最低氣溫高A.—7℃ B.7℃ C.—1℃ D.1℃3.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤24.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側(cè)面展開圖的圓心角是()A.90°B.120°C.150°D.180°5.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.6.1cm2的電子屏上約有細菌135000個,135000用科學(xué)記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1037.《九章算術(shù)》中有這樣一個問題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問甲、乙各有多少錢?設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.8.若,則括號內(nèi)的數(shù)是A. B. C.2 D.89.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形二、填空題(共7小題,每小題3分,滿分21分)11.計算=________.12.已知二次函數(shù)y=ax2+bx(a≠0)的最小值是﹣3,若關(guān)于x的一元二次方程ax2+bx+c=0有實數(shù)根,則c的最大值是_____.13.如圖,在菱形ABCD中,點E、F在對角線BD上,BE=DF=BD,若四邊形AECF為正方形,則tan∠ABE=_____.14.四張背面完全相同的卡片上分別寫有0、、、、四個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,那么抽到有理數(shù)的概率為___________.15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.從1,2,3,4,5,6,7,8這八個數(shù)中,任意抽取一個數(shù),這個數(shù)恰好是合數(shù)的概率是__________.17.如圖,圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為216°的扇形,則r的值為.三、解答題(共7小題,滿分69分)18.(10分)如圖二次函數(shù)的圖象與軸交于點和兩點,與軸交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象經(jīng)過、求二次函數(shù)的解析式;寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;若直線與軸的交點為點,連結(jié)、,求的面積;19.(5分)把0,1,2三個數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數(shù)字.放回后洗勻,再從中抽取一張卡片,記錄下數(shù)字.請用列表法或樹狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.20.(8分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.21.(10分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.22.(10分)﹣(﹣1)2018+﹣()﹣123.(12分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來.24.(14分)撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:本次抽樣調(diào)查共抽取了多少名學(xué)生?求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

直接得出兩位數(shù)是3的倍數(shù)的個數(shù),再利用概率公式求出答案.【題目詳解】∵一枚質(zhì)地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,十位數(shù)為3,則兩位數(shù)是3的倍數(shù)的個數(shù)為2.∴得到的兩位數(shù)是3的倍數(shù)的概率為:=.故答案選:B.【題目點撥】本題考查了概率的知識點,解題的關(guān)鍵是根據(jù)題意找出兩位數(shù)是3的倍數(shù)的個數(shù)再運用概率公式解答即可.2、B【解題分析】

求最高氣溫比最低氣溫高多少度,即是求最高氣溫與最低氣溫的差,這個實際問題可轉(zhuǎn)化為減法運算,列算式計算即可.【題目詳解】3-(-4)=3+4=7℃.

故選B.3、A【解題分析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設(shè)拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.4、D【解題分析】試題分析:設(shè)正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設(shè)正圓錐的側(cè)面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.5、C【解題分析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖6、B【解題分析】

根據(jù)科學(xué)記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【題目詳解】解:135000用科學(xué)記數(shù)法表示為:1.35×1.故選B.【題目點撥】科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、A【解題分析】

設(shè)甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關(guān)于x,y的二元一次方程組,此題得解.【題目詳解】解:設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【題目點撥】本題考查了由實際問題抽象出二元一次方程組,找準等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.8、C【解題分析】

根據(jù)有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù),可得答案.【題目詳解】解:,

故選:C.【題目點撥】本題考查了有理數(shù)的減法,減去一個數(shù)等于加上這個數(shù)的相反數(shù).9、B【解題分析】試題解析:∵AB∥CD,且∴在中,故選B.10、B【解題分析】

在平面內(nèi),如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi)一個圖形繞某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【題目詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【題目點撥】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】試題解析:3-2=1.12、3【解題分析】

由一元二次方程ax2+bx+c=0有實數(shù)根,可得y=ax2+bx(a≠0)和y=-c有交點,由此即可解答.【題目詳解】∵一元二次方程ax2+bx+c=0有實數(shù)根,∴拋物線y=ax2+bx(a≠0)和直線y=-c有交點,∴-c≥-3,即c≤3,∴c的最大值為3.故答案為:3.【題目點撥】本題考查了一元二次方程與二次函數(shù),根據(jù)一元二次方程有實數(shù)根得到拋物線y=ax2+bx(a≠0)和直線y=-c有交點是解決問題的關(guān)鍵.13、【解題分析】

利用正方形對角線相等且互相平分,得出EO=AO=BE,進而得出答案.【題目詳解】解:∵四邊形AECF為正方形,

∴EF與AC相等且互相平分,

∴∠AOB=90°,AO=EO=FO,

∵BE=DF=BD,

∴BE=EF=FD,

∴EO=AO=BE,

∴tan∠ABE==.

故答案為:【題目點撥】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,正確得出EO=AO=BE是解題關(guān)鍵.14、【解題分析】

根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【題目詳解】∵在0.、、、這四個實數(shù)種,有理數(shù)有0.、、這3個,∴抽到有理數(shù)的概率為,故答案為.【題目點撥】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.15、1【解題分析】

根據(jù)向量的三角形法則表示出CB,再根據(jù)BC、AD的關(guān)系解答.【題目詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【題目點撥】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵.16、.【解題分析】

根據(jù)合數(shù)定義,用合數(shù)的個數(shù)除以數(shù)的總數(shù)即為所求的概率.【題目詳解】∵在1,2,3,4,5,6,7,8這八個數(shù)中,合數(shù)有4、6、8這3個,∴這個數(shù)恰好是合數(shù)的概率是.故答案為:.【題目點撥】本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A);找到合數(shù)的個數(shù)是解題的關(guān)鍵.17、1.【解題分析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側(cè)面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點】圓錐的計算.三、解答題(共7小題,滿分69分)18、(1);(2)或;(3)1.【解題分析】

(1)直接將已知點代入函數(shù)解析式求出即可;(2)利用函數(shù)圖象結(jié)合交點坐標得出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;(3)分別得出EO,AB的長,進而得出面積.【題目詳解】(1)∵二次函數(shù)與軸的交點為和∴設(shè)二次函數(shù)的解析式為:∵在拋物線上,∴3=a(0+3)(0-1),解得a=-1,所以解析式為:;(2)=?x2?2x+3,∴二次函數(shù)的對稱軸為直線;∵點、是二次函數(shù)圖象上的一對對稱點;∴;∴使一次函數(shù)大于二次函數(shù)的的取值范圍為或;(3)設(shè)直線BD:y=mx+n,代入B(1,0),D(?2,3)得,解得:,故直線BD的解析式為:y=?x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3?×1×1=1.【題目點撥】此題主要考查了待定系數(shù)法求一次函數(shù)和二次函數(shù)解析式,利用數(shù)形結(jié)合得出是解題關(guān)鍵.19、見解析,.【解題分析】

畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出兩次抽取的卡片上的數(shù)字都是偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩次抽取的卡片上的數(shù)字都是偶數(shù)的結(jié)果數(shù)為4,所以兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率=.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解題分析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【題目詳解】解:(1)∵點P,N是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時,△PMN的面積最大,∴DE∥BC且DE在頂點A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時,△PMN面積最大,∴點D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【題目點撥】本題考查旋轉(zhuǎn)中的三角形,關(guān)鍵在于對三角形的所有知識點熟練掌握.21、(1)詳見解析;(2)36【解題分析】∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的長=30×π×3180=22、-1.【解題分析】

直接利用負指數(shù)冪的性質(zhì)以及

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論