陜西理工大學(xué)《人工智能及其應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
陜西理工大學(xué)《人工智能及其應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
陜西理工大學(xué)《人工智能及其應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
陜西理工大學(xué)《人工智能及其應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
陜西理工大學(xué)《人工智能及其應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)陜西理工大學(xué)《人工智能及其應(yīng)用》

2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的機(jī)器翻譯任務(wù)中,需要將一種語(yǔ)言翻譯成另一種語(yǔ)言。假設(shè)要翻譯的文本涉及專業(yè)領(lǐng)域的術(shù)語(yǔ)和特定的文化背景知識(shí)。以下哪種方法能夠提高翻譯的準(zhǔn)確性和專業(yè)性?()A.使用通用的機(jī)器翻譯模型,不進(jìn)行任何定制B.結(jié)合領(lǐng)域詞典和知識(shí)圖譜進(jìn)行翻譯C.依靠人工翻譯,不使用機(jī)器翻譯D.隨機(jī)選擇翻譯結(jié)果,不考慮準(zhǔn)確性2、人工智能是當(dāng)前科技領(lǐng)域的熱門話題,其應(yīng)用涵蓋了眾多領(lǐng)域。以下關(guān)于人工智能的定義,不準(zhǔn)確的是()A.人工智能是研究、開(kāi)發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)B.人工智能是指讓計(jì)算機(jī)像人類一樣思考和行動(dòng),能夠自主地解決各種復(fù)雜問(wèn)題C.人工智能僅僅是通過(guò)大量的數(shù)據(jù)訓(xùn)練來(lái)實(shí)現(xiàn)對(duì)特定任務(wù)的預(yù)測(cè)和決策,不涉及對(duì)智能本質(zhì)的探索D.人工智能旨在創(chuàng)造出能夠感知環(huán)境、學(xué)習(xí)知識(shí)、進(jìn)行推理和決策,并能夠與人類進(jìn)行交互的智能體3、人工智能中的智能搜索算法常用于解決復(fù)雜的優(yōu)化問(wèn)題。假設(shè)我們要在一個(gè)大規(guī)模的狀態(tài)空間中尋找最優(yōu)解,例如在物流配送中規(guī)劃最優(yōu)的路線。以下哪種智能搜索算法在處理這類問(wèn)題時(shí)可能具有優(yōu)勢(shì)?()A.深度優(yōu)先搜索B.廣度優(yōu)先搜索C.模擬退火算法D.回溯算法4、人工智能中的圖像超分辨率技術(shù)可以將低分辨率圖像轉(zhuǎn)換為高分辨率圖像。假設(shè)要在保持圖像細(xì)節(jié)的同時(shí)提高超分辨率效果,以下哪個(gè)因素是最關(guān)鍵的?()A.神經(jīng)網(wǎng)絡(luò)的深度B.訓(xùn)練數(shù)據(jù)的質(zhì)量C.損失函數(shù)的選擇D.優(yōu)化器的性能5、人工智能在教育領(lǐng)域有潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化學(xué)習(xí)系統(tǒng),能夠根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)計(jì)劃。以下關(guān)于收集學(xué)生學(xué)習(xí)數(shù)據(jù)的方法,哪一項(xiàng)是需要謹(jǐn)慎處理的?()A.跟蹤學(xué)生在在線學(xué)習(xí)平臺(tái)上的學(xué)習(xí)時(shí)間、答題情況等B.收集學(xué)生的個(gè)人興趣愛(ài)好和家庭背景等信息C.分析學(xué)生的作業(yè)和考試成績(jī),了解其知識(shí)掌握程度D.通過(guò)問(wèn)卷調(diào)查了解學(xué)生的學(xué)習(xí)風(fēng)格和偏好6、在一個(gè)利用人工智能進(jìn)行供應(yīng)鏈優(yōu)化的項(xiàng)目中,例如預(yù)測(cè)需求、優(yōu)化庫(kù)存管理和物流路徑規(guī)劃,以下哪種能力是人工智能系統(tǒng)需要具備的關(guān)鍵特性?()A.大規(guī)模數(shù)據(jù)處理能力B.動(dòng)態(tài)適應(yīng)能力C.全局優(yōu)化能力D.以上都是7、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大潛力。假設(shè)要利用人工智能技術(shù)實(shí)現(xiàn)農(nóng)作物的病蟲害監(jiān)測(cè),以下關(guān)于這種應(yīng)用的描述,正確的是:()A.可以通過(guò)分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時(shí)發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗(yàn)和判斷,獨(dú)立完成病蟲害的防治工作C.由于農(nóng)作物生長(zhǎng)環(huán)境的復(fù)雜性,人工智能在病蟲害監(jiān)測(cè)中的應(yīng)用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測(cè)設(shè)備越多,人工智能病蟲害監(jiān)測(cè)系統(tǒng)的準(zhǔn)確性就越高8、在開(kāi)發(fā)一個(gè)能夠與人類進(jìn)行自然流暢對(duì)話的人工智能聊天機(jī)器人時(shí),不僅要理解用戶的輸入,還要生成合理且富有邏輯的回復(fù)。為了實(shí)現(xiàn)這一目標(biāo),以下哪個(gè)方面的技術(shù)是至關(guān)重要的?()A.語(yǔ)言模型的訓(xùn)練B.對(duì)話管理策略C.情感分析能力D.知識(shí)圖譜的構(gòu)建9、人工智能在自動(dòng)駕駛領(lǐng)域有重要的應(yīng)用。假設(shè)一輛自動(dòng)駕駛汽車在行駛過(guò)程中需要做出決策,以下關(guān)于自動(dòng)駕駛中的人工智能決策的描述,正確的是:()A.自動(dòng)駕駛汽車的決策完全依賴于預(yù)先設(shè)定的規(guī)則和算法,不具備自主學(xué)習(xí)和適應(yīng)能力B.復(fù)雜的交通環(huán)境和意外情況不會(huì)對(duì)自動(dòng)駕駛汽車的決策造成困難,因?yàn)槠渚哂型昝赖母兄皖A(yù)測(cè)能力C.自動(dòng)駕駛汽車在決策時(shí)需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預(yù)對(duì)自動(dòng)駕駛汽車的決策沒(méi)有任何幫助,反而可能導(dǎo)致系統(tǒng)混亂10、在人工智能的發(fā)展中,模型的評(píng)估指標(biāo)至關(guān)重要。以下關(guān)于人工智能模型評(píng)估指標(biāo)的描述,不準(zhǔn)確的是()A.準(zhǔn)確率、召回率和F1值常用于分類任務(wù)的評(píng)估B.均方誤差(MSE)和平均絕對(duì)誤差(MAE)常用于回歸任務(wù)的評(píng)估C.評(píng)估指標(biāo)的選擇只取決于數(shù)據(jù)的類型,與具體的應(yīng)用場(chǎng)景無(wú)關(guān)D.可以結(jié)合多個(gè)評(píng)估指標(biāo)來(lái)全面評(píng)估模型的性能11、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)一個(gè)農(nóng)場(chǎng)使用人工智能來(lái)監(jiān)測(cè)作物生長(zhǎng)和病蟲害情況。以下關(guān)于人工智能在農(nóng)業(yè)中的應(yīng)用描述,哪一項(xiàng)是錯(cuò)誤的?()A.通過(guò)圖像識(shí)別技術(shù)可以及時(shí)發(fā)現(xiàn)病蟲害的跡象,采取相應(yīng)的防治措施B.利用傳感器收集的數(shù)據(jù)和分析模型,優(yōu)化灌溉和施肥方案C.人工智能可以完全替代農(nóng)民的經(jīng)驗(yàn)和判斷,自主管理農(nóng)場(chǎng)的所有生產(chǎn)活動(dòng)D.結(jié)合天氣預(yù)報(bào)和市場(chǎng)需求預(yù)測(cè),制定合理的種植計(jì)劃12、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)智能體在探索環(huán)境時(shí)面臨高風(fēng)險(xiǎn)的動(dòng)作選擇,以下哪種策略能夠平衡探索和利用,以實(shí)現(xiàn)更好的學(xué)習(xí)效果?()A.ε-貪心策略,以一定概率隨機(jī)選擇動(dòng)作B.始終選擇最優(yōu)動(dòng)作,不進(jìn)行探索C.隨機(jī)選擇動(dòng)作,不考慮之前的經(jīng)驗(yàn)D.只在初始階段進(jìn)行探索,之后完全利用13、在人工智能的自動(dòng)駕駛感知任務(wù)中,假設(shè)需要同時(shí)處理來(lái)自多個(gè)傳感器(如攝像頭、激光雷達(dá)、毫米波雷達(dá))的數(shù)據(jù)。以下哪種融合方式能夠更有效地綜合利用多源信息?()A.早期融合,在特征層面進(jìn)行融合B.中期融合,在決策層面進(jìn)行融合C.晚期融合,在結(jié)果層面進(jìn)行融合D.隨機(jī)選擇一種傳感器的數(shù)據(jù)作為主要依據(jù)14、在人工智能的語(yǔ)音識(shí)別任務(wù)中,為了提高在嘈雜環(huán)境下的識(shí)別準(zhǔn)確率,以下哪種技術(shù)或方法可能會(huì)被重點(diǎn)研究和應(yīng)用?()A.聲學(xué)模型的改進(jìn)B.噪聲抑制技術(shù)C.多模態(tài)信息融合D.以上都是15、在人工智能的數(shù)據(jù)分析中,假設(shè)要從大量的數(shù)據(jù)中發(fā)現(xiàn)潛在的模式和關(guān)系,以下關(guān)于數(shù)據(jù)分析方法的描述,正確的是:()A.關(guān)聯(lián)規(guī)則挖掘只能發(fā)現(xiàn)簡(jiǎn)單的關(guān)聯(lián)關(guān)系,無(wú)法處理復(fù)雜的數(shù)據(jù)結(jié)構(gòu)B.聚類分析可以將數(shù)據(jù)自動(dòng)分為不同的類別,但類別數(shù)量需要事先指定C.主成分分析能夠降低數(shù)據(jù)的維度,同時(shí)保留主要的信息D.以上數(shù)據(jù)分析方法在實(shí)際應(yīng)用中通常單獨(dú)使用,不需要結(jié)合其他方法16、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂(lè)生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂(lè)作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨(dú)特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論17、人工智能在金融領(lǐng)域的應(yīng)用越來(lái)越廣泛,如風(fēng)險(xiǎn)評(píng)估、投資決策和欺詐檢測(cè)等。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,不準(zhǔn)確的是()A.可以通過(guò)分析大量的金融數(shù)據(jù),更準(zhǔn)確地評(píng)估風(fēng)險(xiǎn)和預(yù)測(cè)市場(chǎng)趨勢(shì)B.能夠?yàn)橥顿Y者提供個(gè)性化的投資建議,優(yōu)化投資組合C.人工智能在金融領(lǐng)域的應(yīng)用完全消除了風(fēng)險(xiǎn)和錯(cuò)誤,保障了金融交易的絕對(duì)安全D.金融機(jī)構(gòu)在采用人工智能技術(shù)時(shí),需要考慮合規(guī)性和監(jiān)管要求18、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨諸多挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù)的描述,正確的是:()A.自動(dòng)駕駛汽車完全依賴傳感器數(shù)據(jù)和人工智能算法,不需要人類駕駛員的任何干預(yù)B.人工智能算法能夠在所有復(fù)雜的交通場(chǎng)景中做出完美的決策,不會(huì)出現(xiàn)錯(cuò)誤C.自動(dòng)駕駛系統(tǒng)需要融合多種傳感器數(shù)據(jù),并通過(guò)深度學(xué)習(xí)算法進(jìn)行實(shí)時(shí)的環(huán)境感知和決策制定D.自動(dòng)駕駛中的人工智能技術(shù)已經(jīng)非常成熟,不存在任何安全隱患19、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)能夠自動(dòng)進(jìn)行邏輯推理和證明。假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)解決數(shù)學(xué)定理證明問(wèn)題的系統(tǒng),以下關(guān)于自動(dòng)推理的描述,正確的是:()A.現(xiàn)有的自動(dòng)推理技術(shù)可以輕松解決所有復(fù)雜的數(shù)學(xué)定理證明問(wèn)題B.自動(dòng)推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學(xué)習(xí)和適應(yīng)新的推理模式C.結(jié)合機(jī)器學(xué)習(xí)和符號(hào)推理的方法,可以提高自動(dòng)推理系統(tǒng)的能力和靈活性D.自動(dòng)推理在人工智能中的應(yīng)用范圍非常有限,沒(méi)有實(shí)際價(jià)值20、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟(jì)、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問(wèn)題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對(duì)少數(shù)類進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別21、當(dāng)利用人工智能進(jìn)行語(yǔ)音合成,使合成的語(yǔ)音聽(tīng)起來(lái)更加自然和富有情感,以下哪種方法可能是重點(diǎn)研究和改進(jìn)的方向?()A.改進(jìn)聲學(xué)模型B.優(yōu)化韻律模型C.提升文本分析精度D.以上都是22、強(qiáng)化學(xué)習(xí)是一種通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略的方法。假設(shè)有一個(gè)機(jī)器人需要通過(guò)學(xué)習(xí)在復(fù)雜的環(huán)境中行走,并且根據(jù)行走的效果獲得獎(jiǎng)勵(lì)或懲罰。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.智能體通過(guò)不斷嘗試和錯(cuò)誤來(lái)改進(jìn)策略B.獎(jiǎng)勵(lì)信號(hào)對(duì)于智能體的學(xué)習(xí)至關(guān)重要C.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模D.智能體的最終目標(biāo)是最大化累積獎(jiǎng)勵(lì)23、當(dāng)使用人工智能進(jìn)行疾病診斷時(shí),需要綜合分析患者的各種臨床數(shù)據(jù),如癥狀、檢查結(jié)果、病史等。假設(shè)這些數(shù)據(jù)來(lái)源多樣、格式不統(tǒng)一,且存在一定的噪聲和缺失值。在這種情況下,以下哪種方法能夠更有效地處理和利用這些數(shù)據(jù)進(jìn)行準(zhǔn)確的診斷?()A.數(shù)據(jù)清洗和預(yù)處理,去除噪聲和填充缺失值B.直接使用原始數(shù)據(jù)進(jìn)行診斷,不做任何處理C.只選擇部分關(guān)鍵數(shù)據(jù),忽略其他數(shù)據(jù)D.對(duì)數(shù)據(jù)進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析,不使用機(jī)器學(xué)習(xí)算法24、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境進(jìn)行交互并根據(jù)獎(jiǎng)勵(lì)來(lái)學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人要在一個(gè)復(fù)雜的迷宮環(huán)境中找到出口,每次到達(dá)出口會(huì)獲得高獎(jiǎng)勵(lì),碰到墻壁會(huì)獲得低獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合訓(xùn)練機(jī)器人找到最優(yōu)路徑?()A.Q-learning算法,通過(guò)估計(jì)狀態(tài)動(dòng)作值來(lái)選擇動(dòng)作B.SARSA算法,基于當(dāng)前策略進(jìn)行學(xué)習(xí)C.策略梯度算法,直接優(yōu)化策略D.蒙特卡羅方法,通過(guò)多次試驗(yàn)估計(jì)價(jià)值25、在人工智能的文本摘要生成中,以下哪種方法可能導(dǎo)致生成的摘要與原文主題偏離?()A.過(guò)度依賴原文中的高頻詞匯B.未能理解原文的語(yǔ)義結(jié)構(gòu)C.忽略原文中的關(guān)鍵信息D.以上都有可能26、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語(yǔ)言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語(yǔ)法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語(yǔ)言的模式和規(guī)律,但可能存在重復(fù)和不一致的問(wèn)題C.文本生成模型的輸出完全由輸入的提示信息決定,沒(méi)有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?7、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)具有強(qiáng)大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項(xiàng)是不正確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實(shí)數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實(shí)性上可以與真實(shí)拍攝的圖像完全無(wú)法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果28、人工智能在語(yǔ)音識(shí)別領(lǐng)域取得了重大進(jìn)展。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)將語(yǔ)音轉(zhuǎn)換為文字的系統(tǒng),以下關(guān)于語(yǔ)音識(shí)別的描述,哪一項(xiàng)是不正確的?()A.聲學(xué)模型用于分析語(yǔ)音的聲學(xué)特征,語(yǔ)言模型用于理解語(yǔ)言的語(yǔ)法和語(yǔ)義B.深度神經(jīng)網(wǎng)絡(luò)在語(yǔ)音識(shí)別中能夠提高識(shí)別準(zhǔn)確率和魯棒性C.語(yǔ)音識(shí)別系統(tǒng)在各種環(huán)境和口音條件下都能達(dá)到100%的準(zhǔn)確率D.對(duì)大量不同口音和背景噪音的語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練,可以提升系統(tǒng)的適應(yīng)性29、在人工智能的農(nóng)業(yè)應(yīng)用中,精準(zhǔn)農(nóng)業(yè)可以通過(guò)傳感器和數(shù)據(jù)分析實(shí)現(xiàn)對(duì)農(nóng)作物的精細(xì)化管理。假設(shè)要根據(jù)土壤濕度和氣象數(shù)據(jù)決定灌溉量,以下哪個(gè)技術(shù)環(huán)節(jié)是最關(guān)鍵的?()A.數(shù)據(jù)的采集和傳輸B.數(shù)據(jù)分析和建模C.灌溉設(shè)備的控制D.傳感器的校準(zhǔn)30、人工智能中的多智能體系統(tǒng)是由多個(gè)相互作用的智能體組成的。假設(shè)在一個(gè)物流配送場(chǎng)景中,多個(gè)配送車輛作為智能體需要協(xié)同工作以優(yōu)化配送路線。那么,以下關(guān)于多智能體系統(tǒng)的特點(diǎn),哪一項(xiàng)是不正確的?()A.智能體之間需要進(jìn)行有效的通信和協(xié)調(diào)B.單個(gè)智能體的決策會(huì)影響整個(gè)系統(tǒng)的性能C.多智能體系統(tǒng)總是能夠達(dá)到全局最優(yōu)解D.智能體可以具有不同的目標(biāo)和策略二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)生成對(duì)抗網(wǎng)絡(luò)(GAN),用于生成具有特定風(fēng)格的舞蹈動(dòng)作序列。通過(guò)引入人體姿態(tài)估計(jì)和

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論