2024屆江西省南昌市進(jìn)賢二中高三第二次模擬考試數(shù)學(xué)試題(A)試題_第1頁
2024屆江西省南昌市進(jìn)賢二中高三第二次模擬考試數(shù)學(xué)試題(A)試題_第2頁
2024屆江西省南昌市進(jìn)賢二中高三第二次模擬考試數(shù)學(xué)試題(A)試題_第3頁
2024屆江西省南昌市進(jìn)賢二中高三第二次模擬考試數(shù)學(xué)試題(A)試題_第4頁
2024屆江西省南昌市進(jìn)賢二中高三第二次模擬考試數(shù)學(xué)試題(A)試題_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023屆江西省南昌市進(jìn)賢二中高三第二次模擬考試數(shù)學(xué)試題(A)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.2.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.3.已知正方體的棱長為,,,分別是棱,,的中點(diǎn),給出下列四個命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.4.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.5.在中,在邊上滿足,為的中點(diǎn),則().A. B. C. D.6.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.7.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.8.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,9.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.10.我國宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或11.在中,為中點(diǎn),且,若,則()A. B. C. D.12.已知,,則等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是____________.14.在的展開式中,各項系數(shù)之和為,則展開式中的常數(shù)項為__________________.15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識競賽,則選出的名同學(xué)中恰好名男生名女生的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.19.(12分)已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿足.(1)求的方程;(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.20.(12分)已知,,.(1)求的最小值;(2)若對任意,都有,求實(shí)數(shù)的取值范圍.21.(12分)在邊長為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.22.(10分)已知,,,,證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.2.A【解析】

首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點(diǎn)時直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.3.C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因為是中點(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.4.C【解析】

根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.5.B【解析】

由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點(diǎn)睛】本題考查平面向量的線性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.6.C【解析】令圓的半徑為1,則,故選C.7.C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,∴的圖象關(guān)于點(diǎn)成中心對稱.可排除A、D項.當(dāng)時,,∴B項不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應(yīng)的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.8.D【解析】

根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點(diǎn)睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.9.D【解析】

討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時,;當(dāng)時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計算能力和應(yīng)用能力.10.C【解析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時,由余弦弦定理得:,.當(dāng)時,由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.11.B【解析】

選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.12.B【解析】

由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點(diǎn)睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.②③【解析】

根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點(diǎn)睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.14.【解析】

利用展開式各項系數(shù)之和求得的值,由此寫出展開式的通項,令指數(shù)為零求得參數(shù)的值,代入通項計算即可得解.【詳解】的展開式各項系數(shù)和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數(shù)項為.故答案為:.【點(diǎn)睛】本題考查二項展開式中常數(shù)項的計算,涉及二項展開式中各項系數(shù)和的計算,考查計算能力,屬于基礎(chǔ)題.15.【解析】

根據(jù)等差中項性質(zhì),結(jié)合等比數(shù)列通項公式即可求得公比;代入表達(dá)式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運(yùn)算性質(zhì)可得,故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列通項公式的簡單應(yīng)用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運(yùn)算,屬于中檔題.16.【解析】

從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點(diǎn)睛】組合數(shù)與概率的基本運(yùn)用,熟悉組合數(shù)公式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)1(2)【解析】

(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時等號成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當(dāng)時,.又由上式得,當(dāng)時,,,.因此不等式(*)均成立.令(),則,(i)若時,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當(dāng)時,此時,,,則需由(*)知,,(當(dāng)且僅當(dāng)時等號成立),所以.②當(dāng)時,此時,,則當(dāng)時,(由(*)知);當(dāng)時,(由(*)知).故對于任意,.綜上述:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.18.(1)答案不唯一,具體見解析(2)證明見解析【解析】

(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進(jìn)而得證.【詳解】(1)依題意,當(dāng)時,,①當(dāng)時,恒成立,此時在定義域上單調(diào)遞增;②當(dāng)時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對于時,總有.由此得【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19.(1);(2).【解析】

(1)根據(jù)焦點(diǎn)坐標(biāo)和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程為,由題意可知為中點(diǎn).聯(lián)立直線與橢圓方程,由韋達(dá)定理表示出,由判別式可得;由平面向量的線性運(yùn)算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點(diǎn)坐標(biāo)公式可得點(diǎn)的坐標(biāo),代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點(diǎn)和右焦點(diǎn),則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線的方程為,點(diǎn)滿足,則為中點(diǎn),點(diǎn)在圓上,設(shè),聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點(diǎn),則點(diǎn)在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內(nèi)單調(diào)遞增,所以,即所以【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程求法,直線與橢圓的位置關(guān)系

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論