




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheFutureof
IntelligenceAnalysis:
U.S.-AustraliaProjectonAIandHuman
MachineTeaming
September2024
Page2
Contents
ExecutiveSummary3
ScopeNote6
Introduction7
TheIntelligenceAnalysisMissionandExpectationsofGenerativeAI9
AIToday:ThinkingAboutApplicationsAcrosstheAnalyticWorkflow14
LookingAhead:TheComingWaveofAIAdvancements22
RecommendedActions27
AppendixA:FactorsThatInfluenceGenerativeAIModelPerformance36
AppendixB:DifferingPerspectivesonAI'sPotential38
Contributors40
Page3
ExecutiveSummary
Rapidadvancesinthedevelopmentofartificialintelligence(AI)technologiessincelate2022,particularlythedeploymentofGenerativeAI(GenAI)chatbotspoweredbylargelanguagemodels(LLMs),havedemonstratedthepotentialforAItorevolutionizehowstatesconductintelligencework.AItechnologiesareverylikelytocontinuetorapidlyadvancegiventhelargeamountofinvestmentfromtheprivatesectorandnationstates,withsomeexpertspredictingwewillseetheadventofartificialgeneralintelligence(AGI)–atypeofAIthatachieves,orsurpasses,human-levelcapacityforlearning,perception,andcognitiveflexibility–bytheendofthisdecade.1Evenifthisambitiousgoalisnotfullymet,theLLMsavailablewithinthenextthreeyearswillprobablyfarsurpassthecapabilitiesofsystemsweusetodayandwillbeabletosolvecomplexproblems,takeactiontocollectandsortdata,anddeliverwell-reasonedassessmentsatscaleandatspeed.
●TheeffectsofAIlikelywillbefeltatalllevelsoftheintelligenceenterprise,includingincollection,butthearenathatweassesswillseetheearliestimpactwillbeontheall-sourceanalyticmissionbecauseofAI’sabilitytoquicklyprocesslargevolumesofdataandGenAI’sabilitytoproducemeaningfulinsightsfromthem.
IntelligenceagenciesthatareabletoeffectivelyandsafelyincorporateGenAIintotheirworkflowscouldrealizesubstantialgainsinthebreadthanddepthoftheiranalyticworkandsignificantlyspeedupthedeliverytimeofcriticalinsightstodecision-makers.Ifintegratedintoandadaptedforintelligenceanalyticwork,currentlyavailableGenAItoolswouldspeedupandenhanceseveralstagesoftheanalyticworkflow,fromthesearchforanddiscoveryofnewdata,toconceptualizinganalyticproducts,toapplyinganalytictradecraftandconductingclassificationchecks.
●Futuresystemswillbeevenmorecapableandwillbeabletoshouldermoreoftheanalyticworkload;firstbyautonomouslytakingcareofroutinetasks,suchasforeignlanguagetranslation,databasing,anddatavisualizationandeventuallybymoredirectlyapplyingintelligenceanalysistradecrafttoanswerpolicymakerquestionsandprovideunique,value-addedinsights.
●WhileU.S.andAustralianIntelligenceCommunities(ICs)arewell-acquaintedwithAIandhavebeentrackingitsdevelopmentforyears,theyaretakingacautiousapproachtodeployments.Theirhesitancyisrootedinconcerns–well-foundedatpresent–over
1TimMucci&ColeStryker,
GettingReadyforArtificialGeneralIntelligence,
IBM(2024).
Page4
someofthetechnicallimitationsofexistingGenAIsystemsandthelackofclearlegalandpolicyguidanceabouthowthesesystemsshouldbeusedfornationalsecuritypurposes.Thereisalsoskepticismaboutthevalueaddedofthistechnologyoverhighly-trainedhumananalystswithdeepsubjectmatterexpertise.Thishasledanalyticmanagerstoban,orseverelylimit,theuseofGenAI,andconstraineddeploymentsofGenAItoolstonarrowuses,suchasdocumentsummarization,thatarewellwithinthecapabilitiesofcurrentLLMsbutwilllagfarbehindwhatfuturesystemswillbeabletoprovide.
●TheirhesitancyalsoreflectsaviewamonganalyticpractitionersthatAIis“justanothersoftwaretool”thatanalystswillneedtolearnhowtouseandthatexistingapproachestotechnologyadoptionaresufficient.Itisourassessment,however,thatfutureAIcapabilitieswillbesopowerfulthattheywilltransformthebusinessofintelligenceanalysis,andthattheICsneedtoactwithgreaterurgencynowtopreparefortheirarrivalandeffectivedeployment,especiallyinanticipationofadversariessuccessfullyleveragingthepowerofthesetools.
AustralianandU.S.leadersshouldbeginlayingthegroundworknowfortheGenAIfuturethatliesjustaroundthecorner.ToavoidremainingperpetuallybehindthecurveonthepaceofAItechnologicaldevelopment,analyticmanagersshouldshifttheirfocusawayfromwhatGenAIcandotodayandinsteadmakereasonedbetsonwhatGenAIwillbeabletodeliverwithinthenext3-5years.InadditiontopressingtheirhomeagenciestoacquireandintegrateAI-relatedinfrastructure(particularlyadvancedcomputecapabilities,accesstocutting-edgecommercially-availableGenAImodelsandalgorithms,andsecuredatastorage),wemakethefollowingrecommendationsforU.S.andAustraliananalyticmanagers:
1.DesignforContinuousAIModelImprovements.WiththeexpectedexponentialgrowthofLLMs,theICscannotonlylookonlytothecurrenttechnologicalstate-of-playbutmustalsoanticipateGenAI’sfuturetrajectoryoverthecourseofthenextfive,ten,ortwentyyears.Theymustbalancequicklyandsafelydeployingthesetoolswhilealsoclearlyensuringtheproperintegrationoftheexpertiseandskillsofhumananalysts.ThiswillincludeaccountingforlargerLLMs,expansionsincontextlengths,andfurtherdevelopmentsinmoresophisticatedsystemslikecompoundandagenticsystems.
2.InsistonAutomatingPortionsoftheAnalyticWorkflow.ManagersshouldfullydeconstructallofthekeyelementsoftheanalyticprocesswithaneyetowardusingAIcapabilitiestoshrinktheamountoftimerequiredtodeliverinsighttopolicymakerswhilemaintainingstringentstandardsforquality,accuracy,andanalytictradecraft.Elementsthatcurrentlyhaveaheavyamountofhumanredundancy,suchastheanalyticreviewprocess,probablycouldseesomeefficiencies.
3.BuildHuman-MachineAnalyticTeams.AnticipatingthegrowingpowerofAIsystems,ICleadersshouldstandupanalyticteamsthatpurposefullyblendtherelativestrengthsof
Page5
humansandmachines.Thiswillrequireestablishingtheexpectationsandrules-of-the-roadforwhathumansareresponsiblefor,alongwithcreatingnewtradecraftstandards.
4.CreateAI-ReadyTrainingandIncentiveStructuresfortheAnalyticWorkforce.Toeffectivelyintegratethesesystemswillrequireaworkforcethatispreparedandadeptatexploitingthesetoolstotheirfullestpotential.TheICswillneedtoinvestindigitalacumen,boththroughtherecruitmentofhighly-trainedtalentandupskillingtheexistingworkforce.
ThereareopportunitiesforU.S.andAustralianICleaderstocollaborateonthedevelopmentandresponsibledeploymentofAIsforintelligenceanalysis.PotentialareasforcooperationincludearticulatingethicalandanalyticstandardsfortheuseofAIsystems,exchangingfindingsfromAItestingandevaluationprograms,sharingbestpracticesinthemanagementofhuman-machineteams,andpilotingtheuseofAItotacklediscreteintelligenceanalysisproblemsonasharedhigh-sidedatacloud.
Page6
ScopeNote
ConductedthroughacollaborationbetweentheSpecialCompetitiveStudiesProject(SCSP)andtheAustralianStrategicPolicyInstitute(ASPI),thisprojectseekstoilluminateAI'spotentialtoenhanceall-sourceintelligenceanalysis.WeengagedexpertsfromthenationalsecurityandemergingtechnologysectorsthroughaseriesofworkshopsheldsimultaneouslyinCanberraandWashington.Acompletelistofcontributorscanbefoundattheendofthereport.
Theinauguralworkshop,heldinlateNovember2023,assessedcurrentAIapplications,privatesectoradvancementsindicativeoffuturepotential,andadoptionchallenges.Thesecondworkshop,heldinFebruary2024,developedaseriesofrecommendationsforaligningcutting-edgegenerativeAIwithanalysisneedsandsupportingthebroaderorganizationaltransformationneededtoharnessthepotentialofAImodelsforall-sourceanalysis.Theoutcomesoftheseworkshops,supplementedbyareviewofrelevantliteratureandexpertconsultations,formthefoundationofthiscomprehensivereport,whichpresentsspecificrecommendationsforstrategicallyimplementingAIintheintelligenceoperationsofbothcountries,targetingnear-term,impactfulapplications.
Page7
Introduction
Therapidevolutionofartificialintelligence(AI),transitioningfromspeculativefictiontotangiblereality,isunderscoredbyadvancementsinmachinelearning(ML)andnaturallanguageprocessing(NLP)aswellasthemeteoricriseoftoolslikeGeminiandChatGPT,whichboastmorethan100millionusers.2AI-poweredmachinesalreadyexcelatgames,medicaldiagnoses,andstandardizedtests,andspecializedAImodelsnowperformtasksindomainslikefinance,science,marketing,datamanagement,research,gamedevelopment,andhealthcare.3
OpenAI’sreleaseofChatGPTinNovember2022–andsubsequentreleasesfromnotonlyOpenAIitself(thefourthversion,ChatGPT-4o,wasreleasedinMay2024),Google(Bard,March2023,andGemini,December2023)andAnthropic(Claude,March2023)–heraldedanewgenerationofartificialintelligencethatofferedunprecedentedopportunitiesforuserstoqueryandinteractwithoverwhelmingvolumesofinformation.TheseLLM-basedgenerativeAImodelshaveavarietyofuses,mostnotablyusingalgorithmstocreatenovelresponsestouserquestionsbydrawingonthepatternsofwordsdetectedinthemassiveamountsofdataonwhichtheyhavebeentrained.LLMsarelikelymostfamiliartoreaders,buttheyarenottheonlytypeof(orapproachto)generativeAIcurrentlyavailable.4Forthisreport,however,wefocusonLLM-poweredgenerativeAI.
2AishaMalik,
OpenAI’sChatGPTNowHas100MillionWeeklyActiveUsers,
TechCrunch(2023).
3DavidSilver,etal.
,MasteringtheGameofGoWithoutHumanKnowledge,
Nature(2017);
MachineLearning’s
PotentialtoImproveMedicalDiagnosis,
U.S.GovernmentAccountabilityOffice(2022);DemisHassabis,
AlphaFold
RevealstheStructureoftheProteinUniverse,
DeepMind(2022);
IntroducingBloombergGPT,
BloombergProfessionalServices(2023);RossTaylor,et.al.
,Galactica,
Meta(2023);DaniilA.Boiko,etal.
,EmergentAutonomousScientific
ResearchCapabilitiesofLargeLanguageModels,
ArXiv(2023);
Copy.ai
(lastaccessed2024);DataEngine,
ScaleAI
(lastaccessed2024);
Elicit,
Ought(lastaccessed2024);
Scenario
(lastaccessed2024);A.J.Ghergich,
How
AutomationIsTransformingHealthcareJobs,
Forbes(2021);and
AwesomeGenerativeAI,
Github(lastaccessed
2024).
4Retrieval-AugmentedAI,forexample,usestraditionalsearchmethodologiestoidentifythedocumentsthatare
mostrelevanttotheusers’queries,effectivelyimprovingthequalityoftheresponsewhilesimultaneouslyloweringtheprobabilityoftheAIincorrectlyinferringananswerbasedonthestatisticalpatternsthatexistintheunderlyingdata.TheconceptofRAGAIwasintroducedinPatrickLewis,etal.
,Retrieval-AugmentedGenerationforKnowledge
IntensiveTasks,
arXiv(2021).AndrewNghasadvocatedfor“data-centricAI,”whichfocusesonoptimizingthedata
andmetadatatosupportmoresophisticatedAI.See
Data-CentricAIResourceHub
(lastaccessed2024).
Page8
WhatWeMeanby“ArtificialIntelligence”
ThispaperexploresthepotentialofGenerativeAI(GenAI)poweredbylargelanguagemodels(LLMs)forintelligencetasksinvolvingunstructureddata.Whileoftenusedinterchangeably,ML,DeepLearning(DL),andGenAIaredistinctAIsubfieldswithuniquecapabilitiesandchallenges.MLusesalgorithmstointerpretdataandmakepredictions,formingAI'sfoundationallayer.DL,asubsetofML,utilizescomplexneuralnetworksfortaskslikeimagerecognitionandnaturallanguageprocessing,handlingvastvolumesofstructuredandunstructureddata.GenAI,includingtechnologiessuchasGenerativeAdversarialNetworks(GANs)andVariationalAutoencoders(VAEs),representsthemostadvancedsubset.GenAIfocusesoncreatingrealisticnewcontentliketextandimagesfromunstructureddatatypes,requiringthemostsophisticatedhardwarelikegraphicsprocessingunits(GPUs)andtensorprocessingunits(TPUs).
GraphicSource.5
ImagineanintelligenceanalystwhoemploysGenAItohelpforecastRussia'snextmovesinUkraineortounearthillicitChinesefundinginTaiwanesemedia,uncoveringanemerginginfluencenetworkbeforeTaiwan'selections.Sheisnolongeroverwhelmedbydata;instead,sheemploysmultipleAI-poweredtoolstoefficientlyextractcrucialinsightswiththecomputationalmightatherdisposal.However,thisanalystwouldnotrelysolelyonAI;sheknowsthatshewillneedtocommunicateandthuscontextualizethoseinsights.Shewouldcriticallyassessits
sStuartRussell&PeterNorvig
,ArtificialIntelligence:AModernApproach,
PearsonEducationPressat17-26(2021);JeffreyA.Dean,
AGoldenDecadeofDeepLearning:ComputingSystems&Applications,
Daedalus(2022).
Page9
predictions,injectherowntacitknowledge,commonsense,andmoralcompasstosteerAIpastitsinevitablequirksandmakenuanceddecisionstoadapttosurprises,andmanagesensitivescenariosornon-routinesituationswhereAImayotherwisefallshort.6Thisvisionepitomizesthepromiseof“augmentedintelligence”–seamlesslycombininghumanknowledgeandcreativitywithmachinescaleandprecisiontocreateasystemgreaterthanthesumofitsparts.7
FortheU.S.andAustralianICs,wearguethattheAIavenue
Thepromiseof“augmentedintelligence” –seamlesslycombining humanknowledgeand creativitywithmachine scaleandprecisionto createasystemgreaterthanthesumofitsparts.
withthehighestpotentialimpactishuman-machineteaming(HMT),whichcouldrevolutionizetheefficiency,scale,depth,andspeedatwhichanalyticinsightsaregenerated.AI-HMTpromisestoelevateanalyticalcapabilitiesbycreatingfeedbackloopsthatallowanalystsandalgorithmstobenefitfromthestrengthsoftheother.Inthenationalintelligencefield,pilotprojectsdeployAIforbespokeanalyticalfunctions,experiments,andotherdiscretetasks,thoughnotyetatscaleorintegratedacrossthefullanalyticworkflow.8
Withcontinuingbreakthroughs,theintegrationofexpansiveAIcapabilitiesintothebroadercraftofintelligenceanalysisseemsimminent,butintegratingthesetoolsintointelligenceoperationspresentsauniquesetofchallenges.Inahighstakesenvironment,intelligenceservices,likethoseintheUnitedStatesandAustralia,mustmaintainaveryhighbarforthequalityandaccuracyoftheassessmentstheyproduce;therefore,theyhavelowtolerancefornewtools,inaccurateinformation,orrecommendationsthatconflictwithlegalorethicalguidelines.Inaddition,itisimportantthattherebesomelevelofcooperationandcoordinationbetweenfriendlyintelligenceserviceswhenitcomestothedeploymentandintegrationofAItools.Iffriendlyservicesdeploythesetoolsatdifferentspeedsorevendeploydifferenttypesoftools,itmaycomplicatefuturecollaboration.
6AjayAgrawal,etal.
,PredictionMachines:TheSimpleEconomicsofArtificialIntelligence,
HarvardBusinessReviewPressat53–54,65–69,102(2018);MichaelPolanyi,
TheTacitDimension,
UniversityofChicagoPressat4(2009);
DavidAutor,
Polanyi’sParadoxandtheShapeofEmploymentGrowth,
NationalBureauofEconomicResearchat8
(2014).
7JamesWilson&PaulR.Daugherty,
CollaborativeIntelligence:HumansandAIAreJoiningForces,
HarvardBusinessReview(2018).
8Examplesinclude:NGA’spartnershipwithImpactObservatorytoproduceAI-generatedmapsatalmostreal-time,NGA’sSourceMaritimeAutomatedProcessingSystem(SMAPS)Program,IARPA’s“REASON”P(pán)rogramtodevelopanintelligenceanalysisassistantplug-in,andtheCIA'sdeploymentofGenAIchatbot.JeanneChircop,
AIRevolutionizes
MappingUpdates,Accuracy,
NationalGeospatialIntelligenceAgency(lastaccessed2024);
NGAPutsMachine
LearningtoWorktoSpeedMission,FurtherResearch,
NationalGeospatialIntelligenceAgency(2022);
REASON:
RapidExplanation,AnalysisandSourcingOnline,
IntelligenceAdvancedResearchProjectsActivity(lastaccessed
2024).
Page10
TheIntelligenceAnalysis
MissionandExpectationsofGenerativeAI
WorkshopparticipantssawopportunitiesfordifferenttypesofAItoaugmentintelligenceanalystsand,insomecases,automateseveralpartsoftheirworkacrosstheanalyticworkflow.ItshouldbenotedthatintelligenceserviceshavealonghistoryofusingAI–intheformofmachinelearningalgorithms–asimportantelementsoftheirenterpriseinformationtechnologystacks.TheyarealsoactivelytestingandexperimentingwiththecurrentgenerationofGenAIandotherAImodels.9
WeexpecttoseeintelligenceservicesfurtherdeployingmoresophisticatedAIsystemsintoproductionoverthenext12to18months–justasweexpecttoseeLLMsgrowandartificialintelligencetobecomemoresophisticatedoverthatsametimeperiod.Giventhatthesetoolsandcapabilitieswillgrowatanexponentialspeed,thereisalwaysariskthatICswillstruggletokeeppace.Therefore,overthemedium-term,intelligencecommunitiesmustdevelopfocused,yetflexible,strategiesfortheirimplementation.
Inthesimplestterms,intelligenceanalysisisintendedtodiscernforeignactors’intentionsandactionsbywarningandinformingpolicymakersofchangesinthegeostrategicenvironmentthatarelikelytoaffecttheirsenseofnationalinterests.Itcanalsocharacterizewhatthosechangesmightmeanoverthenear-,mid-,andlong-term.Thechangescanbeone-offevents(e.g.,abi-ormultilateraldiplomaticsummit,anelection,amilitaryacquisitiondecision)ortrends(e.g.,risingtensionsbetweentwoormorecountries,theimplementationandrefinementofapoliticalagenda,amilitarycampaign).Contextualizingtheevent,trend,anditsprobableeffectsinlightofavailableinformationisacriticalsubtextofanalyticmissions.
Inordertoprovidetheseinsights,intelligenceanalystsworkthroughacyclicalprocess–theanalyticworkflow–wherenewinformationissynthesizedandintegratedintoanalyticproductsforcustomers,whointurnprovidefeedbackthatguideswhatnewinformationandinsightsare
9FrankKonkel,
TheUSIntelligenceCommunityisEmbracingGenerativeAI,
GovernmentExecutive(2024);Brandi
Vincent,
CIAtoInvestigateHowGenerativeAI(likeChatGPT)CanAssistIntelligenceAgencies,
DefenseScoop(2023);PeterMartin&KatrinaManson,
CIABuildsItsOwnArtificialIntelligenceToolinRivalryWithChina,
Bloomberg(2023).
Page11
required.Artificialintelligencehasthepotentialtoautomatemanypartsofthisworkflow.Whileanalystsareoftenthekeydriverpushingthrougheachstageofthecycle,thereareotherrelevantstakeholders.Analystsmustliaisewithdatacollectors,includingthoseresponsibleforopen-sourceandclandestinelyacquiredinformation.Similarly,disseminatinganalysestocustomersandconsumersoccursthrougharangeofsystemsandpeople,fromasecurewebsitethroughtoabrieferassignedtosupportaseniordecision-makerforasustainedperiodoftime.Asaresult,introducingLLMsinto
theanalyticworkflowcouldhavespillovereffectsintothelargerintelligenceandpolicymakingapparatuses,especiallyifvariousstakeholdershavetocoordinatetheiruseoftechnologyinordertoupholdtheserelationships.
CoreRequirements:Transparency,Explainability,andAccountability
Inatypicalanalyticproduct,acentralargumentisbolsteredbyasmallnumberofstrongpiecesofevidence.Underthecurrentsystem,humananalystsarelargelyresponsibleformanually
TheabilityofLLMstoholdmoredata,andchangetheweightofthatdata,meansthatananalystwhoisteamedwithanAIwillbeabletodraweffortlesslyonthemostrecent,relevant,and
reputablesupportinginformation.
collatingandweighingevidence,whichincreasesthelikelihoodthatakeypieceofevidence,eitheronethataddsimportantnuanceorstandsinconflicttothecentralargument,willbemissed.TheabilityofLLMstoholdmoredata,andchangetheweightofthatdata,meansthatananalystwhoisteamedwithanAIwillbeabletodraweffortlesslyonthemostrecent,relevant,andreputablesupportinginformation.
Page12
LimitationsofExistingAIModelsforAnalysis
GenAImodelsareconstantlygaininginsophistication,witheachiterationofamodelmakingcrucialimprovementsoverpreviousversions.Atthesametime,eachiterationalsocreatesnewvulnerabilitiesaboutwhichintelligenceprofessionalsmustbeaware.Giventhevariouscomponentsthatgointothesemodels,theywillalwayshavetheirinherentlimitations,whichnotonlynecessitatehumanoversightbutalsotechnicalsafeguards.
?EarlyLLMsstruggledwithfactualgrounding.Asstatisticalmodelsfocusonsequencepredictionsratherthanfactualaccuracy,somecurrentLLMscangenerateseeminglyplausiblebutwhollyinventedstatementsungroundedinreality.Thistendencyto“hallucinate”stemsfromfactorslikemisunderstandingcontent,limitedtrainingdata,over-relianceonstatisticallikelihoodsratherthanverifiedevidencesources,andalackofmechanismstoconfirmaccuracy.Forintelligenceanalysts,hallucinationscouldcriticallymisguidehigh-impactassessmentsifnotcaught.Developersareworkingonmitigationtechniquesincludingpromptfine-tuningandalgorithmsthatalertuserstopossiblehallucinations.10
?LLMshavelimitedreasoningcapacities.Despiteadvancesinnaturallanguageprocessing,mostlargelanguagemodelsstillstrugglewithcomplexcausalanalysis,logicaldeduction,analogicalmappingbetweenscenarios,ormathematicallymodelingkeyrelationshipsunderlyingevents,evenwiththebestdataavailable.Whenpolicymakersturntointelligenceanalystsforassessments,itisvitalthatanalystsexplainhowtheydrewtheirconclusions.Hybridapproachesthatcombinestatisticallearningwithcompositionalreasoning,causaldiagrams,andotherframeworkscouldbetterelicitexplanatoryrationaleswithinAIsystems.
?LLMsriskpre-existingbiasamplification.Foranalysistobeofhighquality,itmustbegroundedinanappropriateregionalandgenerationalcontext.Largelanguagemodelstrainedonlimitedsocietaltextsmayindirectlypropagateandevenamplifyhistoricalbiases.Forall-sourceintelligenceapplication,backwardstransmissionofdisproportionaterepresentationsortoxicassociationsaroundfactorslikerace,gender,ethnicityandculturecouldcorrodesocialequitystandardsvitaltopublicserviceintegrity.Establishingproactivealgorithmauditingprocessesforfairness,inclusionandvaluealignmenttailoredtotheuniquedatainteroperabilityandpolicynotificationneedsofintelligencecommunitieswillhelpavoidmarginalization.
10ImamaShezad,
BeyondTraditionalFine-Tuning:ExploringAdvancedTechniquestoMitigateLLMHallucinations,
HuggingFace(2024);SebastianFarquharetal.
,DetectingHallucinationsinLargeLanguageModelsUsingSemantic
Entropy,
Nature(2024).
Page13
However,onekeychallengethatcomeswithdeployingLLMsinintelligenceanalysisistheopaquenessthatcomeswithLLMoutputs.LLMsintrinsicallyfunctionas“blackboxes,”obscuringsomeofthedetailedreasoningthathasledtothemodel'soutput,whichposesaproblemforanalystsandpolicymakersalike.RobustaccountabilityandmaintainingpolicymakerandpublictrustareofutmostimportancewithintheUnitedStatesandAustralianintelligenceservices,giventheiruniqueresponsibilitiesandaccesstosensitiveinformation.Ifpolicymakerscannotunderstandhowandwhycertainevidencewasused,theanalysislosescredibility.11
Therefore,theICsmustensurethatbasicstandardsfortransparencyandexplainabilityaredesignedinconjunctionwiththedeploymentofLLMs.FortheU.S.IC,thesestandardsmustadheretoODNIrequirements,suchasICD203(“AnalyticStandards”)andICD206(“SourcingRequirementsforDisseminatedAnalyticProducts”).12ThetwoICDsmandatedetailedsourcesandanalystconfidenceinthosesources.
ExplainableAI(XAI)isonetoolthatcouldensurethatLLMoutputsmeetthesestandards.XAIhelpsinthegenerationofinsightsthatarejustifiable,trustworthy,andfostertrustinAI’suseinintelligence.XAIaimstodemystifyAIdecisionsbyprovidingtwolevelsofexplanation:globalexplanationsthatdescribethesystem'soverallworkings,andlocalexplanationsthatdetailtherationalebehindspecificdecisions.Severalresearchinitiatives,suchasIARPA'sREASON,BENGAL,BETTER,andHIATUSprograms,aswellasDARPA'sXAIprogram,havebeenlaunchedtohelpdevelopandimplementXAIintheintelligencedomain.13Theyseektodevelopnoveltechnologiesthatenableintelligenceanalyststoimproveevidenceandreasoninginanalyticreports,identifyandmitigatebiasingenerativeAIsystems,improvetheaccuracyandexplainabilityofinformationextractedfromunstructuredtextdata,anddevelopexplainablemodelsforattributingauthorshiptoanonymousorpseudonymoustextdata.
Intheabsenceoffu
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【深企投產(chǎn)業(yè)研究院】2025AI眼鏡產(chǎn)業(yè)鏈研究報(bào)告-2025.4
- 十九知識(shí)測(cè)試題及答案
- 智能建筑玻璃清潔機(jī)器人租賃及綠色能源解決方案合同
- 2025年中國(guó)干爽抗菌絲薄衛(wèi)生巾市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)導(dǎo)線輪市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)安全面罩市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)多維乳酸鈣果味沖劑市場(chǎng)調(diào)查研究報(bào)告
- 2025年商務(wù)、清洗服務(wù)項(xiàng)目發(fā)展計(jì)劃
- 2025年中國(guó)四合一長(zhǎng)簧鉗市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)疊式保健箱市場(chǎng)調(diào)查研究報(bào)告
- 初中數(shù)學(xué)新課程標(biāo)準(zhǔn)(2024年版)
- 鋼結(jié)構(gòu)的油漆施工課件
- 眼部美容手術(shù)
- 幼兒園安全隱患舉報(bào)獎(jiǎng)勵(lì)制度范文(二篇)
- 多邊形的內(nèi)角和的說(shuō)課稿
- 生活垃圾焚燒發(fā)電廠摻燒一般工業(yè)固廢和協(xié)同處置污泥項(xiàng)目環(huán)評(píng)資料環(huán)境影響
- DB11T 1615-2019 園林綠化科普標(biāo)識(shí)設(shè)置規(guī)范
- 小學(xué)六年級(jí)畢業(yè)班家長(zhǎng)會(huì)課件
- DB34∕T 2922-2017 水利水電工程底橫軸驅(qū)動(dòng)翻板鋼閘門(mén)制造、安裝及驗(yàn)收規(guī)范
- SLT824-2024 水利工程建設(shè)項(xiàng)目文件收集與歸檔規(guī)范
- 女性下生殖道粘連診治中國(guó)專(zhuān)家共識(shí)(2024年版)解讀
評(píng)論
0/150
提交評(píng)論