2025屆廣西南寧二中、柳州高中高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第1頁(yè)
2025屆廣西南寧二中、柳州高中高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第2頁(yè)
2025屆廣西南寧二中、柳州高中高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第3頁(yè)
2025屆廣西南寧二中、柳州高中高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第4頁(yè)
2025屆廣西南寧二中、柳州高中高考考前提分?jǐn)?shù)學(xué)仿真卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣西南寧二中、柳州高中高考考前提分?jǐn)?shù)學(xué)仿真卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)滿(mǎn)足=1,則等于()A.- B. C.- D.2.()A. B. C. D.3.一個(gè)幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,則這個(gè)幾何體的體積為()A. B. C. D.4.已知F為拋物線(xiàn)y2=4x的焦點(diǎn),過(guò)點(diǎn)F且斜率為1的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),則||FA|﹣|FB||的值等于()A. B.8 C. D.45.的展開(kāi)式中的系數(shù)為()A.5 B.10 C.20 D.306.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線(xiàn)的中點(diǎn),已知過(guò)與的平面與圓錐側(cè)面的交線(xiàn)是以為頂點(diǎn)的拋物線(xiàn)的一部分,則該拋物線(xiàn)的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.7.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)8.某單位去年的開(kāi)支分布的折線(xiàn)圖如圖1所示,在這一年中的水、電、交通開(kāi)支(單位:萬(wàn)元)如圖2所示,則該單位去年的水費(fèi)開(kāi)支占總開(kāi)支的百分比為()A. B. C. D.9.等比數(shù)列中,,則與的等比中項(xiàng)是()A.±4 B.4 C. D.10.在中,,則()A. B. C. D.11.我國(guó)著名數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無(wú)其他正因數(shù),則稱(chēng)這個(gè)整數(shù)為素?cái)?shù)),在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.12.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿(mǎn)足約束條件則的最大值為_(kāi)_______.14.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動(dòng),其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個(gè)組的概率為_(kāi)_________.15.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則__________.16.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對(duì)點(diǎn),使得的面積是的面積的2倍,則的值為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.18.(12分)已知函數(shù)(1)已知直線(xiàn):,:.若直線(xiàn)與關(guān)于對(duì)稱(chēng),又函數(shù)在處的切線(xiàn)與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.19.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.20.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線(xiàn)的上方,求實(shí)數(shù)的取值范圍21.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【詳解】解:設(shè)的最小正周期為,因?yàn)?,所以,所以,所以,又,所以?dāng)時(shí),,,因?yàn)?,整理得,因?yàn)椋?,,則所以.故選:C.【點(diǎn)睛】本題考查三角形函數(shù)的周期性和對(duì)稱(chēng)性,考查學(xué)生分析能力和計(jì)算能力,是一道難度較大的題目.2、A【解析】

分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.3、C【解析】

由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個(gè)以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是由三視圖求幾何體的體積,解決本題的關(guān)鍵是得到該幾何體的形狀.4、C【解析】

將直線(xiàn)方程代入拋物線(xiàn)方程,根據(jù)根與系數(shù)的關(guān)系和拋物線(xiàn)的定義即可得出的值.【詳解】F(1,0),故直線(xiàn)AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線(xiàn)的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點(diǎn)睛】本題考查了拋物線(xiàn)的定義,直線(xiàn)與拋物線(xiàn)的位置關(guān)系,屬于中檔題.5、C【解析】

由知,展開(kāi)式中項(xiàng)有兩項(xiàng),一項(xiàng)是中的項(xiàng),另一項(xiàng)是與中含x的項(xiàng)乘積構(gòu)成.【詳解】由已知,,因?yàn)檎归_(kāi)式的通項(xiàng)為,所以展開(kāi)式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查求二項(xiàng)式定理展開(kāi)式中的特定項(xiàng),解決這類(lèi)問(wèn)題要注意通項(xiàng)公式應(yīng)寫(xiě)準(zhǔn)確,本題是一道基礎(chǔ)題.6、D【解析】

建立平面直角坐標(biāo)系,求得拋物線(xiàn)的軌跡方程,解直角三角形求得拋物線(xiàn)的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線(xiàn)放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線(xiàn),代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【點(diǎn)睛】本小題考查圓錐曲線(xiàn)的概念,拋物線(xiàn)的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識(shí).7、D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補(bǔ)集的定義寫(xiě)出運(yùn)算結(jié)果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點(diǎn)睛】該題考查的是有關(guān)集合的問(wèn)題,涉及到的知識(shí)點(diǎn)有函數(shù)的定義域,函數(shù)的值域,集合的運(yùn)算,屬于基礎(chǔ)題目.8、A【解析】

由折線(xiàn)圖找出水、電、交通開(kāi)支占總開(kāi)支的比例,再計(jì)算出水費(fèi)開(kāi)支占水、電、交通開(kāi)支的比例,相乘即可求出水費(fèi)開(kāi)支占總開(kāi)支的百分比.【詳解】水費(fèi)開(kāi)支占總開(kāi)支的百分比為.故選:A【點(diǎn)睛】本題考查折線(xiàn)圖與柱形圖,屬于基礎(chǔ)題.9、A【解析】

利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項(xiàng)是.

由等比數(shù)列的性質(zhì)可得,.

∴與的等比中項(xiàng)

故選A.【點(diǎn)睛】本題考查了等比中項(xiàng)的求法,屬于基礎(chǔ)題.10、A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)椋?,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿(mǎn)足,那么為的重心.11、B【解析】

先列舉出不超過(guò)的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿(mǎn)足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過(guò)的素?cái)?shù)有:、、、、、,在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過(guò)的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點(diǎn)睛】本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】

分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生運(yùn)算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線(xiàn)的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃問(wèn)題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】

先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動(dòng),其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個(gè),甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個(gè)數(shù)有:個(gè),所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點(diǎn)睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.15、【解析】

設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項(xiàng)為,則,則,,,,,因此,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

寫(xiě)出所在直線(xiàn)方程,求出圓心到直線(xiàn)的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線(xiàn)的方程為,即.圓的圓心到直線(xiàn)的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對(duì),可得點(diǎn)到的距離是點(diǎn)到直線(xiàn)的距離的2倍,可得過(guò)圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線(xiàn)和圓的位置關(guān)系以及點(diǎn)到直線(xiàn)的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)利用正弦定理化簡(jiǎn)已知條件,由此求得的值,進(jìn)而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達(dá)式,進(jìn)而求得的取值范圍.【詳解】(1)由題設(shè)知,,即,所以,即,又所以.(2)由題設(shè)知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點(diǎn)睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.18、(1)(2)①證明見(jiàn)解析②證明見(jiàn)解析【解析】

(1)首先根據(jù)直線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng)的直線(xiàn)的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線(xiàn)與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡(jiǎn)后得到.【詳解】(1)由解得必過(guò)與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對(duì)稱(chēng)的點(diǎn)為,即為直線(xiàn),所以的方程為,即,其斜率為.又因?yàn)?,所以,,由題意,解得.(2)因?yàn)?,所?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)?,所以,因?yàn)?,所以存在,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時(shí),,即時(shí),.【點(diǎn)睛】本小題考查函數(shù)圖象的對(duì)稱(chēng)性,利用導(dǎo)數(shù)求切線(xiàn)的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識(shí);考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識(shí).19、(1)見(jiàn)解析;(2).【解析】

(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線(xiàn)合一的性質(zhì)得出,利用勾股定理得出,由線(xiàn)面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)?,所?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)?,所以,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線(xiàn)與的交點(diǎn)即為球心,記的中點(diǎn)為點(diǎn),則.由與相似可得,所以.所以三棱錐外接球的體積為.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了三棱錐外接球體積的計(jì)算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.20、(1)(2)【

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論