版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省綏化市重點中學2025屆高三下學期聯(lián)合考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(
)A. B. C.或 D.或2.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.83.已知數(shù)列的前項和為,且,,則()A. B. C. D.4.設復數(shù)滿足為虛數(shù)單位),則()A. B. C. D.5.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.6.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)7.已知函數(shù)()的最小值為0,則()A. B. C. D.8.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.99.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個發(fā)彩色光的小燈泡且在背面用導線相連(弧的兩端各一個,導線接頭忽略不計),已知扇形的半徑為30厘米,則連接導線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米10.若復數(shù)滿足,則()A. B. C.2 D.11.某設備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年12.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數(shù)為_____.14.已知兩個單位向量滿足,則向量與的夾角為_____________.15.已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得≥0的概率為.16.已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學生的成績,統(tǒng)計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624(Ⅰ)若測試的同學中,分數(shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調(diào)整安全教育方案?附表及公式:,其中.18.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.19.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)21.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.22.(10分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由成等差數(shù)列得,利用等比數(shù)列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關鍵,對于等比數(shù)列的通項公式也要熟練.2、B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.【點睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應用.3、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.4、B【解析】
易得,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數(shù)的乘法、除法運算,考查學生的基本計算能力,是一道容易題.5、C【解析】
設,根據(jù)導數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.6、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.7、C【解析】
設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉化思想,考查數(shù)形結合思想,屬于中檔題.8、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數(shù)量積運算,掌握基本概念和公式即可解決,屬于簡單題目.9、B【解析】
由于實際問題中扇形弧長較小,可將導線的長視為扇形弧長,利用弧長公式計算即可.【詳解】因為弧長比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導線長度約為63(厘米).故選:B.【點睛】本題主要考查了扇形弧長的計算,屬于容易題.10、D【解析】
把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法.11、D【解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.12、C【解析】
先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
直接根據(jù)分層抽樣的比例關系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學生的人數(shù)為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.14、【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.15、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.16、【解析】
由圓柱外接球的性質(zhì),即可求得結果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質(zhì)求圓柱底面半徑,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調(diào)整安全教育方案.【解析】
(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用超幾何分布的計算公式,計算出的分布列并求得數(shù)學期望.(III)由(II)中數(shù)據(jù),計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為:是否合格性別不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(Ⅱ)“不合格”和“合格”的人數(shù)比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為,.的分布列為:20151050所以.(Ⅲ)由(Ⅱ)知:.故我們認為該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查超幾何分布的分布列、數(shù)學期望和方差的計算,所以中檔題.18、(1)證明見解析(2)【解析】
(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結論;(2)設分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設,求解,即可得出結論.【詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設分別為邊的中點,則,(或補角)是異面直線與所成的角.設為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設,由,易知點的坐標分別為則顯然向量是平面的法向量已知二面角為,設,則設平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點睛】本題考查空間點、線、面位置關系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應的平面角是解題的關鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于中檔題.19、(1)見證明;(2)【解析】
(1)取的中點,連.可證得,,于是可得平面,進而可得結論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結,∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設,則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標系.不妨設,則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設平面的一個法向量為,由,得,令,則得.又,設直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點睛】利用向量法求解直線和平面所成角時,關鍵點是恰當建立空間直角坐標系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關系.20、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經(jīng)計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.21、(1)證明見解析(2)【解析】
(1)利用線段長度得到與間的垂直關系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 揭秘文學之魅
- 6 觀察與比較 說課稿-2024-2025學年科學一年級上冊教科版
- 供應鏈優(yōu)化管理與合作服務合同
- 二手房屋買賣補充協(xié)議范本
- 長期租賃車輛協(xié)議書
- 蔬菜配送合同模板
- 專屬工作任務承攬協(xié)議一
- 互聯(lián)網(wǎng)科技企業(yè)戰(zhàn)略合作框架協(xié)議
- 簡單租地合同協(xié)議書范文
- 2024校醫(yī)全職招聘及管理服務合同范本3篇
- 江蘇省蘇州市昆山、太倉、常熟、張家港四市2024-2025學年九年級上學期期末陽光測試道法卷(含答案)
- 溫濕度記錄管理制度模版(3篇)
- 二年級數(shù)學兩位數(shù)加兩位數(shù)計算題同步檢測訓練題
- 2025的委托拍賣合同范本
- 彈性模量自動生成記錄
- 老年癡呆患者安全護理
- 管理制度醫(yī)療器械質(zhì)量管理制度
- 顱腦損傷的高壓氧治療
- 公司章程模板五篇
- 汽車行走的藝術學習通超星期末考試答案章節(jié)答案2024年
- 2025屆山東省菏澤市部分重點學校高一上數(shù)學期末統(tǒng)考模擬試題含解析
評論
0/150
提交評論