山東省萊州一中2025屆高三下學期第五次調(diào)研考試數(shù)學試題含解析_第1頁
山東省萊州一中2025屆高三下學期第五次調(diào)研考試數(shù)學試題含解析_第2頁
山東省萊州一中2025屆高三下學期第五次調(diào)研考試數(shù)學試題含解析_第3頁
山東省萊州一中2025屆高三下學期第五次調(diào)研考試數(shù)學試題含解析_第4頁
山東省萊州一中2025屆高三下學期第五次調(diào)研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省萊州一中2025屆高三下學期第五次調(diào)研考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.2.已知等比數(shù)列的前項和為,且滿足,則的值是()A. B. C. D.3.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.4.已知復數(shù),,則()A. B. C. D.5.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.6.由實數(shù)組成的等比數(shù)列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元8.復數(shù)的共軛復數(shù)為()A. B. C. D.9.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結(jié)論正確的是()A. B. C. D.10.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.211.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數(shù)的圖象交于點Q,且該冪函數(shù)在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.12.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知是的中點,且,點滿足,則的取值范圍是_______.14.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數(shù)物價各幾何?”借用我們現(xiàn)在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數(shù)和物品價格?答:一共有_____人;所合買的物品價格為_______元.15.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.16.已知集合,,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.18.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.19.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.20.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.21.(12分)等差數(shù)列的前項和為,已知,.(1)求數(shù)列的通項公式;(2)設數(shù)列{}的前項和為,求使成立的的最小值.22.(10分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或?qū)?shù)計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關系,涉及到拋物線的定義,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.2、C【解析】

利用先求出,然后計算出結(jié)果.【詳解】根據(jù)題意,當時,,,故當時,,數(shù)列是等比數(shù)列,則,故,解得,故選.【點睛】本題主要考查了等比數(shù)列前項和的表達形式,只要求出數(shù)列中的項即可得到結(jié)果,較為基礎.3、C【解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.4、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.5、A【解析】

首先的單調(diào)性,由此判斷出,由求得的關系式.利用導數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數(shù),.構造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.6、C【解析】

根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項公式是解決本題的關鍵.7、D【解析】

用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.8、D【解析】

直接相乘,得,由共軛復數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質(zhì).9、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.10、B【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.11、B【解析】

由已知可求出焦點坐標為,可求得冪函數(shù)為,設出切點通過導數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F(xiàn)關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點坐標,求冪函數(shù)解析式,直線的斜率公式及導數(shù)的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.12、C【解析】

先確定摸一次中獎的概率,5個人摸獎,相當于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復試驗的公式得到結(jié)果.【詳解】從6個球中摸出2個,共有種結(jié)果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復試驗中恰好發(fā)生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結(jié)果,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據(jù)函數(shù)知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數(shù)量積的定義的應用,以及余弦定理的應用,涉及到函數(shù)思想和分類討論思想的應用,解題關鍵是建立函數(shù)關系式,屬于中檔題.14、753【解析】

根據(jù)物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數(shù)學文化及一元一次方程的應用,屬于中檔題.15、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關系建立不等式,利用基本不等式求解即可.【詳解】解:①當時,,在區(qū)間上單調(diào)遞減,則,即,則.②當時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調(diào)遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.16、【解析】

由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)由題意可得,的坐標,結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯(lián)立與,可求出的坐標,由,可得關于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設直線,則與直線的交點,又,設直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力.18、(1)(2)是定值,詳見解析【解析】

(1)根據(jù)長軸長為,離心率,則有求解.(2)設,則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設,則,直線,令得,,則,直線,令,得,則,.【點睛】本題主要考查橢圓的方程及直線與橢圓的位置關系,還考查了平面幾何知識和運算求解的能力,屬于中檔題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意可知:由,求得點坐標,即可求得橢圓的方程;(Ⅱ)設直線,代入橢圓方程,由韋達定理,由,由為銳角,則,由向量數(shù)量積的坐標公式,即可求得直線斜率的取值范圍.【詳解】解:(Ⅰ)根據(jù)題意是等腰直角三角形,,設由得則代入橢圓方程得橢圓的方程為(Ⅱ)根據(jù)題意,直線的斜率存在,可設方程為設由得由直線與橢圓有兩個不同的交點則即得又為銳角則即②由①②得或故直線斜率可取值范圍是【點睛】本題考查橢圓的標準方程及簡單幾何性質(zhì),考查直線與橢圓的位置關系,考查向量數(shù)量積的坐標運算,韋達定理,考查計算能力,屬于中檔題.20、(1)(2)【解析】

(1)根據(jù)橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論