浙江省金華市磐安縣第二中學2025屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第1頁
浙江省金華市磐安縣第二中學2025屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第2頁
浙江省金華市磐安縣第二中學2025屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第3頁
浙江省金華市磐安縣第二中學2025屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第4頁
浙江省金華市磐安縣第二中學2025屆高三六校第一次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省金華市磐安縣第二中學2025屆高三六校第一次聯(lián)考數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.根據(jù)散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln22.若的內角滿足,則的值為()A. B. C. D.3.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.4.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.5.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.6.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.7.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.8.設遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.9.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.10.已知三棱柱()A. B. C. D.11.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.12.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知二面角α﹣l﹣β為60°,在其內部取點A,在半平面α,β內分別取點B,C.若點A到棱l的距離為1,則△ABC的周長的最小值為_____.14.的角所對的邊分別為,且,,若,則的值為__________.15.設函數(shù),當時,記最大值為,則的最小值為______.16.在中,,,,則________,的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.18.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.19.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設為.(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區(qū)的面積最大,求的值.20.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數(shù)學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據(jù)此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現(xiàn)從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.,其中.21.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數(shù)方程為(t為參數(shù)).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數(shù)函數(shù)的最值,是基礎題,.2、A【解析】

由,得到,得出,再結合三角函數(shù)的基本關系式,即可求解.【詳解】由題意,角滿足,則,又由角A是三角形的內角,所以,所以,因為,所以.故選:A.【點睛】本題主要考查了正弦函數(shù)的性質,以及三角函數(shù)的基本關系式和正弦的倍角公式的化簡、求值問題,著重考查了推理與計算能力.3、D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.4、D【解析】

先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.5、C【解析】

利用基本初等函數(shù)的單調性判斷各選項中函數(shù)在區(qū)間上的單調性,進而可得出結果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調性的判斷,熟悉一些常見的基本初等函數(shù)的單調性是判斷的關鍵,屬于基礎題.6、B【解析】

建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數(shù),屬于中檔題.7、D【解析】

設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.8、A【解析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.9、A【解析】

根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.10、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=11、C【解析】

設出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.12、A【解析】

根據(jù)復數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結果.【詳解】由題可知原式為,該復數(shù)為純虛數(shù),所以.故選:A【點睛】本題考查復數(shù)的運算和復數(shù)的分類,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BC=MB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【詳解】作A關于平面α和β的對稱點M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BC=MB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.【點睛】此題考查求空間三角形邊長的最值,關鍵在于根據(jù)幾何性質找出對稱關系,結合解三角形知識求解.14、【解析】

先利用余弦定理求出,再用正弦定理求出并把轉化為與邊有關的等式,結合可求的值.【詳解】因為,故,因為,所以.由正弦定理可得三角形外接圓的半徑滿足,所以即.因為,解得或(舍).故答案為:.【點睛】本題考查正弦定理、余弦定理在解三角形中的應用,注意結合求解目標對所得的方程組變形整合后整體求解,本題屬于中檔題.15、【解析】

易知,設,,利用絕對值不等式的性質即可得解.【詳解】,設,,令,當時,,所以單調遞減令,當時,,所以單調遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質,考查轉化思想及邏輯推理能力,屬于難題.16、【解析】

利用余弦定理可求得的值,進而可得出的值,最后利用三角形的面積公式可得出的面積.【詳解】由余弦定理得,則,因此,的面積為.故答案為:;.【點睛】本題考查利用余弦定理解三角形,同時也考查了三角形面積的計算,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標;(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當時,將(為參數(shù))代入得,設直線l上A、B兩點所對應的參數(shù)為,中點M所對應的參數(shù)為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.18、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根據(jù),可得曲線C1的極坐標方程,然后先計算曲線C2的普通方程,最后根據(jù)極坐標與直角坐標的轉化公式,可得結果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標方程聯(lián)立,可得A,B的極坐標,然后簡單計算,可得結果.【詳解】(Ⅰ)由所以曲線的極坐標方程為,曲線的普通方程為則曲線的極坐標方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標方程和參數(shù)方程與直角坐標方程的轉化,以及極坐標方程中的幾何意義,屬基礎題.19、(1),.(2)【解析】

(1)由余弦定理的,然后根據(jù)直線與圓相切的性質求出,從而求出;(2)求得的表達式,通過求導研究函數(shù)的單調性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因為與半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點睛】本題考查余弦定理、直線與圓的位置關系、導數(shù)與函數(shù)最值的關系,考查考生的邏輯思維能力,運算求解能力,以及函數(shù)與方程的思想.20、(1)有的把握認為喜歡物理與性別有關;(2)分布列見解析,.【解析】

(1)根據(jù)題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結論;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、、、.根據(jù)計數(shù)原理計算出每個所對應的概率,列出分布列計算期望即可.【詳解】(1)根據(jù)所給條件得列聯(lián)表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點睛】本題考查了獨立性檢驗、離散型隨機變量的概率分布列.離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論