版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第2頁(yè),共2頁(yè)中國(guó)地質(zhì)大學(xué)(武漢)《計(jì)算機(jī)視覺(jué)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺(jué)的應(yīng)用于農(nóng)業(yè)領(lǐng)域,例如作物監(jiān)測(cè)和病蟲(chóng)害檢測(cè),需要對(duì)大量的田間圖像進(jìn)行分析。假設(shè)我們要檢測(cè)農(nóng)作物葉片上的病蟲(chóng)害癥狀,以下哪種技術(shù)能夠?qū)崿F(xiàn)快速、準(zhǔn)確的檢測(cè),并且適應(yīng)不同的生長(zhǎng)階段和環(huán)境條件?()A.基于傳統(tǒng)圖像分割和特征提取的方法B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)和分類算法,針對(duì)病蟲(chóng)害特征訓(xùn)練C.基于光譜分析和顏色特征的方法D.基于機(jī)器視覺(jué)和模式識(shí)別的方法2、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,例如從多視角圖像恢復(fù)物體的三維形狀,需要解決相機(jī)位姿估計(jì)、特征匹配等問(wèn)題。以下哪種方法在相機(jī)位姿估計(jì)方面可能具有更高的精度?()A.基于直接線性變換的方法B.基于BundleAdjustment的方法C.基于特征點(diǎn)的方法D.基于深度學(xué)習(xí)的方法3、在圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進(jìn)行配準(zhǔn),以下哪個(gè)因素對(duì)于配準(zhǔn)的準(zhǔn)確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲4、計(jì)算機(jī)視覺(jué)在無(wú)人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開(kāi)障礙物。以下關(guān)于計(jì)算機(jī)視覺(jué)在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)視覺(jué)傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺(jué)在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行5、在計(jì)算機(jī)視覺(jué)的目標(biāo)跟蹤任務(wù)中,跟蹤一個(gè)移動(dòng)的物體具有挑戰(zhàn)性。假設(shè)要在一段視頻中跟蹤一個(gè)快速移動(dòng)的車輛,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的目標(biāo)跟蹤算法在處理非線性運(yùn)動(dòng)時(shí)效果最佳B.深度學(xué)習(xí)中的相關(guān)濾波方法能夠快速適應(yīng)目標(biāo)的外觀變化和遮擋情況C.目標(biāo)跟蹤算法不需要考慮目標(biāo)的尺度變化和旋轉(zhuǎn)D.目標(biāo)跟蹤的準(zhǔn)確性只取決于初始幀中目標(biāo)的定位精度6、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度不同的同一物體的圖像進(jìn)行對(duì)齊。以下關(guān)于特征匹配的方法,哪一項(xiàng)是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征進(jìn)行匹配B.基于像素值的直接比較進(jìn)行匹配C.利用SURF(SpeededUpRobustFeatures)特征進(jìn)行匹配D.通過(guò)ORB(OrientedFASTandRotatedBRIEF)特征進(jìn)行匹配7、計(jì)算機(jī)視覺(jué)中的圖像配準(zhǔn)任務(wù)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的城市風(fēng)景照片進(jìn)行配準(zhǔn)。以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征點(diǎn)匹配的方法,找到兩張圖像中的對(duì)應(yīng)點(diǎn),然后計(jì)算變換矩陣B.基于灰度信息的配準(zhǔn)方法通過(guò)比較圖像的像素值來(lái)實(shí)現(xiàn)配準(zhǔn)C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法可以用于圖像配準(zhǔn),自動(dòng)學(xué)習(xí)圖像之間的對(duì)應(yīng)關(guān)系D.圖像配準(zhǔn)總是能夠達(dá)到像素級(jí)別的精確對(duì)齊,不存在任何誤差8、在計(jì)算機(jī)視覺(jué)中,深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的距離。以下關(guān)于深度估計(jì)的說(shuō)法,錯(cuò)誤的是()A.可以通過(guò)立體視覺(jué)、結(jié)構(gòu)光或飛行時(shí)間等技術(shù)來(lái)獲取深度信息B.深度學(xué)習(xí)方法在單目深度估計(jì)中取得了顯著進(jìn)展C.深度估計(jì)對(duì)于三維重建、虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用具有重要意義D.深度估計(jì)的結(jié)果總是非常精確,不需要進(jìn)行后處理和優(yōu)化9、圖像分類是計(jì)算機(jī)視覺(jué)的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)一組動(dòng)物圖片進(jìn)行分類,區(qū)分貓、狗、兔子等。以下關(guān)于圖像分類方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)方法,如支持向量機(jī)(SVM),也可以用于圖像分類任務(wù)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內(nèi)容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過(guò)數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪、翻轉(zhuǎn)等,增加訓(xùn)練數(shù)據(jù)的多樣性10、在計(jì)算機(jī)視覺(jué)的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過(guò)對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息11、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺(jué)跟蹤方法能夠提供較好的長(zhǎng)期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法12、計(jì)算機(jī)視覺(jué)中的圖像超分辨率重建旨在提高圖像的分辨率和細(xì)節(jié)。假設(shè)要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時(shí)要保持圖像的自然度和真實(shí)性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學(xué)習(xí)的方法D.基于學(xué)習(xí)字典的方法13、當(dāng)利用計(jì)算機(jī)視覺(jué)技術(shù)對(duì)醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時(shí),需要從大量的圖像數(shù)據(jù)中提取有價(jià)值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價(jià)值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動(dòng)特征學(xué)習(xí)D.基于顏色的特征提取14、計(jì)算機(jī)視覺(jué)中的視頻理解不僅包括對(duì)單個(gè)幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個(gè)電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時(shí)空動(dòng)態(tài)信息和語(yǔ)義信息?()A.基于幀級(jí)特征和分類器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動(dòng)軌跡的方法D.基于音頻和視頻融合的方法15、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)我們要分析一個(gè)視頻中物體的運(yùn)動(dòng)速度和方向,以下哪種光流估計(jì)算法在復(fù)雜場(chǎng)景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法16、計(jì)算機(jī)視覺(jué)中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要對(duì)一段視頻中的物體運(yùn)動(dòng)進(jìn)行分析,以下關(guān)于光流估計(jì)的描述,正確的是:()A.稀疏光流估計(jì)只計(jì)算圖像中部分特征點(diǎn)的運(yùn)動(dòng),無(wú)法反映整體的運(yùn)動(dòng)趨勢(shì)B.稠密光流估計(jì)能夠得到圖像中每個(gè)像素的運(yùn)動(dòng)向量,但計(jì)算復(fù)雜度較高C.光流估計(jì)的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計(jì)只能用于分析勻速直線運(yùn)動(dòng)的物體,對(duì)于復(fù)雜的運(yùn)動(dòng)模式無(wú)法處理17、對(duì)于視頻中的目標(biāo)跟蹤任務(wù),假設(shè)目標(biāo)在視頻中經(jīng)歷了快速的外觀變化和嚴(yán)重的遮擋。以下哪種策略有助于保持跟蹤的準(zhǔn)確性和穩(wěn)定性?()A.結(jié)合目標(biāo)的運(yùn)動(dòng)模型和外觀模型進(jìn)行預(yù)測(cè)B.僅依賴目標(biāo)的初始外觀特征進(jìn)行跟蹤C(jī).當(dāng)出現(xiàn)遮擋時(shí),停止跟蹤并等待目標(biāo)重新出現(xiàn)D.隨機(jī)調(diào)整跟蹤算法的參數(shù)18、在醫(yī)學(xué)圖像分析中,計(jì)算機(jī)視覺(jué)技術(shù)有助于疾病的診斷和治療。假設(shè)醫(yī)生需要對(duì)一組肺部CT圖像進(jìn)行分析,以檢測(cè)是否存在腫瘤。以下關(guān)于醫(yī)學(xué)圖像分析中的計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.計(jì)算機(jī)視覺(jué)算法可以自動(dòng)檢測(cè)和定位肺部腫瘤,提高診斷的效率和準(zhǔn)確性B.能夠?qū)D像進(jìn)行增強(qiáng)和預(yù)處理,突出病變區(qū)域,便于醫(yī)生觀察和判斷C.由于醫(yī)學(xué)圖像的復(fù)雜性和個(gè)體差異,計(jì)算機(jī)視覺(jué)的結(jié)果總是完全準(zhǔn)確無(wú)誤的D.可以通過(guò)大量標(biāo)注的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行訓(xùn)練,學(xué)習(xí)正常和異常的圖像特征19、計(jì)算機(jī)視覺(jué)中的醫(yī)學(xué)圖像分析對(duì)于疾病的診斷和治療具有重要意義。以下關(guān)于醫(yī)學(xué)圖像分析的描述,不準(zhǔn)確的是()A.可以對(duì)X光、CT、MRI等醫(yī)學(xué)圖像進(jìn)行病灶檢測(cè)、器官分割和疾病分類B.深度學(xué)習(xí)技術(shù)在醫(yī)學(xué)圖像分析中取得了顯著的成果,但也面臨數(shù)據(jù)標(biāo)注困難和模型泛化能力不足的問(wèn)題C.醫(yī)學(xué)圖像分析需要遵循嚴(yán)格的醫(yī)學(xué)標(biāo)準(zhǔn)和倫理規(guī)范,確保結(jié)果的準(zhǔn)確性和可靠性D.醫(yī)學(xué)圖像分析完全依賴于計(jì)算機(jī)視覺(jué)技術(shù),醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)不再重要20、在計(jì)算機(jī)視覺(jué)的視頻分析中,假設(shè)要對(duì)一段監(jiān)控視頻中的異常行為進(jìn)行檢測(cè)。以下關(guān)于特征提取的方法,哪一項(xiàng)是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級(jí)特征B.利用光流信息來(lái)捕捉物體的運(yùn)動(dòng)特征C.僅分析視頻的音頻信息,忽略圖像內(nèi)容D.結(jié)合時(shí)空特征,同時(shí)考慮空間和時(shí)間維度的信息21、計(jì)算機(jī)視覺(jué)中的圖像修復(fù)是填補(bǔ)圖像中的缺失或損壞部分。假設(shè)我們有一張老照片,其中部分區(qū)域被損壞,需要進(jìn)行修復(fù)。以下哪種圖像修復(fù)方法能夠生成自然、合理的內(nèi)容,與周圍區(qū)域融合良好?()A.基于紋理合成的修復(fù)方法B.基于插值和填充的修復(fù)方法C.基于深度學(xué)習(xí)的圖像修復(fù)網(wǎng)絡(luò),如ContextEncoderD.基于圖像分解和重構(gòu)的修復(fù)方法22、圖像分類是計(jì)算機(jī)視覺(jué)的常見(jiàn)應(yīng)用之一??紤]一個(gè)需要對(duì)大量自然風(fēng)景圖片進(jìn)行分類的任務(wù),這些圖片包含了不同的季節(jié)、地理位置和天氣條件。為了提高分類準(zhǔn)確率,以下哪種預(yù)處理操作可能最為有效?()A.對(duì)圖像進(jìn)行裁剪和縮放,使其具有統(tǒng)一的尺寸B.對(duì)圖像進(jìn)行直方圖均衡化,增強(qiáng)對(duì)比度C.將圖像轉(zhuǎn)換為灰度圖像,減少顏色信息的干擾D.對(duì)圖像進(jìn)行隨機(jī)旋轉(zhuǎn)和翻轉(zhuǎn),增加數(shù)據(jù)多樣性23、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)影像分析中,例如對(duì)腫瘤的檢測(cè)和分割,需要高精度和可靠性。假設(shè)我們有一組磁共振成像(MRI)數(shù)據(jù),以下哪種技術(shù)能夠有效地輔助醫(yī)生進(jìn)行準(zhǔn)確的診斷和治療規(guī)劃?()A.基于傳統(tǒng)圖像處理的方法B.基于深度學(xué)習(xí)的分割網(wǎng)絡(luò),結(jié)合多模態(tài)數(shù)據(jù)C.基于聚類和分類的方法D.基于形態(tài)學(xué)操作和閾值分割的方法24、在計(jì)算機(jī)視覺(jué)的視覺(jué)跟蹤與監(jiān)控應(yīng)用中,需要對(duì)特定目標(biāo)進(jìn)行持續(xù)的跟蹤和監(jiān)測(cè)。假設(shè)要對(duì)一個(gè)在大型商場(chǎng)中移動(dòng)的可疑人員進(jìn)行跟蹤,同時(shí)要應(yīng)對(duì)人群遮擋和環(huán)境變化。以下哪種視覺(jué)跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標(biāo)跟蹤算法B.基于深度學(xué)習(xí)的單目標(biāo)跟蹤C(jī).基于粒子濾波的跟蹤D.基于特征匹配的跟蹤25、計(jì)算機(jī)視覺(jué)中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過(guò)構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力26、計(jì)算機(jī)視覺(jué)中的目標(biāo)計(jì)數(shù)是估計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要在一張人群圖像中準(zhǔn)確計(jì)數(shù)人數(shù),以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,正確的是:()A.基于檢測(cè)的計(jì)數(shù)方法通過(guò)檢測(cè)每個(gè)個(gè)體來(lái)實(shí)現(xiàn)計(jì)數(shù),對(duì)密集場(chǎng)景效果好B.基于回歸的計(jì)數(shù)方法直接預(yù)測(cè)目標(biāo)數(shù)量,計(jì)算速度快但精度較低C.深度學(xué)習(xí)中的注意力機(jī)制在目標(biāo)計(jì)數(shù)中沒(méi)有作用,不能提高計(jì)數(shù)準(zhǔn)確性D.目標(biāo)計(jì)數(shù)只需要考慮目標(biāo)的外觀特征,不需要考慮圖像的上下文信息27、在計(jì)算機(jī)視覺(jué)的發(fā)展中,模型的可解釋性是一個(gè)重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對(duì)于建立用戶對(duì)模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過(guò)程D.目前的計(jì)算機(jī)視覺(jué)模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)28、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)圖像分析中,例如對(duì)腫瘤的檢測(cè)和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)29、假設(shè)要構(gòu)建一個(gè)能夠?qū)Ψb進(jìn)行款式和顏色識(shí)別的計(jì)算機(jī)視覺(jué)系統(tǒng),用于時(shí)尚推薦和庫(kù)存管理。在處理服裝圖像時(shí),由于服裝的款式和顏色變化多樣,以下哪種特征表示方法可能更適合?()A.手工設(shè)計(jì)的特征B.基于深度學(xué)習(xí)的自動(dòng)特征C.顏色直方圖D.以上都是30、圖像分類是計(jì)算機(jī)視覺(jué)的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)大量的自然風(fēng)景圖片進(jìn)行分類,包括山脈、森林、海灘等不同類型,同時(shí)圖片可能存在不同的拍攝角度
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 樹(shù)立規(guī)則為本服務(wù)理念,強(qiáng)化病歷書寫證據(jù)意識(shí)課件
- 2025年高考語(yǔ)文??急厮⒃囶}庫(kù)300題(含答案)
- 2025年畢節(jié)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 2025年桐城師范高等??茖W(xué)校高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 2025科學(xué)儀器行業(yè)發(fā)展趨勢(shì)與市場(chǎng)前景分析
- 2025養(yǎng)老行業(yè)發(fā)展趨勢(shì)與市場(chǎng)前景分析
- 建筑工程可行性研究合同協(xié)議書
- 演員合同書范本
- 經(jīng)典借款合同
- 海運(yùn)貨物運(yùn)輸合同范文
- 搞笑小品劇本《大城小事》臺(tái)詞完整版
- 人大代表小組活動(dòng)計(jì)劃人大代表活動(dòng)方案
- Vue3系統(tǒng)入門與項(xiàng)目實(shí)戰(zhàn)
- 2024年寧夏回族自治區(qū)中考英語(yǔ)試題含解析
- 光伏發(fā)電項(xiàng)目試驗(yàn)檢測(cè)計(jì)劃
- 房屋建筑工程投標(biāo)方案(技術(shù)方案)
- 靜脈輸液法操作并發(fā)癥的預(yù)防及處理
- 2025年高考語(yǔ)文作文備考:議論文萬(wàn)能模板
- T-BJCC 1003-2024 首店、首發(fā)活動(dòng)、首發(fā)中心界定標(biāo)準(zhǔn)
- 外科手術(shù)及護(hù)理常規(guī)
- 鐵嶺衛(wèi)生職業(yè)學(xué)院?jiǎn)握袇⒖荚囶}庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論