版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
海南省??谑腥A僑中學(xué)2025屆高三第五次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.2.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.1803.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.4.若sin(α+3π2A.-12 B.-135.已知集合,,則A. B.C. D.6.的展開(kāi)式中,項(xiàng)的系數(shù)為()A.-23 B.17 C.20 D.637.在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.8.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.9.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.10.已知甲、乙兩人獨(dú)立出行,各租用共享單車(chē)一次(假定費(fèi)用只可能為、、元).甲、乙租車(chē)費(fèi)用為元的概率分別是、,甲、乙租車(chē)費(fèi)用為元的概率分別是、,則甲、乙兩人所扣租車(chē)費(fèi)用相同的概率為()A. B. C. D.11.如圖,正方體的棱長(zhǎng)為1,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值12.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(1,2),則sin(π﹣α)的值是_____.14.?dāng)?shù)學(xué)家狄里克雷對(duì)數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:①的值域?yàn)?②;③;④其中正確的結(jié)論是_______(寫(xiě)出所有正確的結(jié)論的序號(hào))15.已知平面向量,,且,則向量與的夾角的大小為_(kāi)_______.16.已知函數(shù),若,則實(shí)數(shù)的取值范圍為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖在四邊形中,,,為中點(diǎn),.(1)求;(2)若,求面積的最大值.18.(12分)已知曲線,直線:(為參數(shù)).(I)寫(xiě)出曲線的參數(shù)方程,直線的普通方程;(II)過(guò)曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.19.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項(xiàng)和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列、的通項(xiàng)公式;(2)令,證明:.20.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.21.(12分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.22.(10分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.2、A【解析】
因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.【點(diǎn)睛】本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.3、D【解析】
由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.4、B【解析】
由三角函數(shù)的誘導(dǎo)公式和倍角公式化簡(jiǎn)即可.【詳解】因?yàn)閟inα+3π2=3故選B【點(diǎn)睛】本題考查了三角函數(shù)的誘導(dǎo)公式和倍角公式,靈活掌握公式是關(guān)鍵,屬于基礎(chǔ)題.5、D【解析】
因?yàn)?,,所以,,故選D.6、B【解析】
根據(jù)二項(xiàng)式展開(kāi)式的通項(xiàng)公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開(kāi)式的通項(xiàng)公式為.則①出,則出,該項(xiàng)為:;②出,則出,該項(xiàng)為:;③出,則出,該項(xiàng)為:;綜上所述:合并后的項(xiàng)的系數(shù)為17.故選:B【點(diǎn)睛】本小題考查二項(xiàng)式定理及展開(kāi)式系數(shù)的求解方法等基礎(chǔ)知識(shí),考查理解能力,計(jì)算能力,分類討論和應(yīng)用意識(shí).7、B【解析】
根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B【點(diǎn)睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問(wèn)題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.9、A【解析】
求導(dǎo)得到,根據(jù)切線方程得到,故,設(shè),求導(dǎo)得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計(jì)算得到答案.【詳解】,則,取,,故,.故,故,.設(shè),,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.【點(diǎn)睛】本題考查函數(shù)的切線問(wèn)題,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.10、B【解析】
甲、乙兩人所扣租車(chē)費(fèi)用相同即同為1元,或同為2元,或同為3元,由獨(dú)立事件的概率公式計(jì)算即得.【詳解】由題意甲、乙租車(chē)費(fèi)用為3元的概率分別是,∴甲、乙兩人所扣租車(chē)費(fèi)用相同的概率為.故選:B.【點(diǎn)睛】本題考查獨(dú)立性事件的概率.掌握獨(dú)立事件的概率乘法公式是解題基礎(chǔ).11、B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯(cuò)誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點(diǎn)睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.12、B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問(wèn)題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
計(jì)算sinα,再利用誘導(dǎo)公式計(jì)算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點(diǎn)睛】本題考查了三角函數(shù)定義,誘導(dǎo)公式,意在考查學(xué)生的計(jì)算能力.14、②【解析】
根據(jù)新定義,結(jié)合實(shí)數(shù)的性質(zhì)即可判斷①②③,由定義求得比小的有理數(shù)個(gè)數(shù),即可確定④.【詳解】對(duì)于①,由定義可知,當(dāng)為有理數(shù)時(shí);當(dāng)為無(wú)理數(shù)時(shí),則值域?yàn)?,所以①錯(cuò)誤;對(duì)于②,因?yàn)橛欣頂?shù)的相反數(shù)還是有理數(shù),無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù),所以滿足,所以②正確;對(duì)于③,因?yàn)?,?dāng)為無(wú)理數(shù)時(shí),可以是有理數(shù),也可以是無(wú)理數(shù),所以③錯(cuò)誤;對(duì)于④,由定義可知,所以④錯(cuò)誤;綜上可知,正確的為②.故答案為:②.【點(diǎn)睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問(wèn)題的關(guān)鍵,屬于中檔題.15、【解析】
由,解得,進(jìn)而求出,即可得出結(jié)果.【詳解】解:因?yàn)?,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點(diǎn)睛】本題主要考查平面向量的運(yùn)算,平面向量垂直,向量夾角等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】
畫(huà)圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對(duì)稱的區(qū)間上具有相反的單調(diào)性.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)1;(2)【解析】
(1),在和中分別運(yùn)用余弦定理可表示出,運(yùn)用算兩次的思想即可求得,進(jìn)而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設(shè),則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時(shí).【點(diǎn)睛】本題主要考查余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.18、(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過(guò)點(diǎn)作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問(wèn)題轉(zhuǎn)化為橢圓上的點(diǎn),到定直線的最大值與最小值問(wèn)題處理.試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.(II)曲線C上任意一點(diǎn)到的距離為.則.其中為銳角,且.當(dāng)時(shí),取到最大值,最大值為.當(dāng)時(shí),取到最小值,最小值為.【考點(diǎn)定位】1、橢圓和直線的參數(shù)方程;2、點(diǎn)到直線的距離公式;3、解直角三角形.19、(1),(2)證明見(jiàn)解析【解析】
(1)利用首項(xiàng)和公差構(gòu)成方程組,從而求解出的通項(xiàng)公式;由的通項(xiàng)公式求解出的表達(dá)式,根據(jù)以及,求解出的通項(xiàng)公式;(2)利用錯(cuò)位相減法求解出的前項(xiàng)和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項(xiàng)為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時(shí),∴,.當(dāng)時(shí),滿足上式.∴(2),令數(shù)列的前項(xiàng)和為.兩式相減得∴恒成立,得證.【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當(dāng)用求解的通項(xiàng)公式時(shí),一定要注意驗(yàn)證是否成立;(2)當(dāng)一個(gè)數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯(cuò)位相減法進(jìn)行求和,同時(shí)注意對(duì)于錯(cuò)位的理解.20、解:設(shè)特征向量為α=對(duì)應(yīng)的特征值為λ,則=λ,即因?yàn)閗≠0,所以a=2.5分因?yàn)?,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點(diǎn):特征向量,逆矩陣點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,考查逆矩陣.21、(1)證明見(jiàn)解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況討論求解.【詳解】(1)因?yàn)椋?,令,則,所以是的增函數(shù),故,即.因?yàn)樗?,①?dāng)時(shí),,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時(shí),所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時(shí),,使得,即,但當(dāng)時(shí),即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.22、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼結(jié)構(gòu)工程施工合同范本
- 科技初創(chuàng)股東合作協(xié)議書(shū)
- 《PCM原理及應(yīng)用》課件
- 盤(pán)扣支架工程保險(xiǎn)合同
- 2025屆浙江省臺(tái)州市黃巖區(qū)畢業(yè)升學(xué)考試模擬卷生物卷含解析
- 遼寧省沈陽(yáng)市第八十二中學(xué)2025屆中考生物押題試卷含解析
- 安徽省南陵縣聯(lián)考2025屆中考生物押題試卷含解析
- 甘肅省隴南市徽縣2025屆中考四模生物試題含解析
- 保證擔(dān)保合同模板(一)
- 農(nóng)電總站站長(zhǎng)的安全職責(zé)范文(2篇)
- 2025年湖南出版中南傳媒招聘筆試參考題庫(kù)含答案解析
- 2025年度商用廚房油煙機(jī)安裝與維護(hù)服務(wù)合同范本3篇
- 2024年03月恒豐銀行2024年春季招考畢業(yè)生筆試歷年參考題庫(kù)附帶答案詳解
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國(guó)特厚板市場(chǎng)占總銷(xiāo)售量45.01%
- 2025年中國(guó)地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘19人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 中國(guó)兒童重癥監(jiān)護(hù)病房鎮(zhèn)痛和鎮(zhèn)靜治療專家共識(shí)2024解讀
- 音樂(lè)老師年度總結(jié)5篇
- 2024版商標(biāo)許可使用合同與商標(biāo)授權(quán)協(xié)議3篇
- 學(xué)生學(xué)情分析報(bào)告范文
- 《中國(guó)文化復(fù)興》課件
評(píng)論
0/150
提交評(píng)論