




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市長安區(qū)第二中學2025屆高考全國統(tǒng)考預測密卷數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為坐標原點,角的終邊經過點且,則()A. B. C. D.2.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個3.已知,若,則等于()A.3 B.4 C.5 D.64.已知數列是公比為的等比數列,且,,成等差數列,則公比的值為(
)A. B. C.或 D.或5.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.6.已知函數,若,,,則a,b,c的大小關系是()A. B. C. D.7.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.8.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.9.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或10.已知函數,且),則“在上是單調函數”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件11.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件12.函數的圖象向右平移個單位得到函數的圖象,并且函數在區(qū)間上單調遞增,在區(qū)間上單調遞減,則實數的值為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的前n項和為Sn,若,則____.14.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數的概率為________.15.函數在內有兩個零點,則實數的取值范圍是________.16.已知,若的展開式中的系數比x的系數大30,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列,的各項都是正數,為數列的前n項和,且對任意,都有,,,(e是自然對數的底數).(1)求數列,的通項公式;(2)求數列的前n項和.18.(12分)已知實數x,y,z滿足,證明:.19.(12分)某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內,每售出1盒該產品獲利50元,未售出的產品,每盒虧損30元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產品,以(單位:盒,)表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.(1)根據直方圖估計這個開學季內市場需求量的平均數和眾數;(2)將表示為的函數;(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.20.(12分)已知橢圓()的半焦距為,原點到經過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經過,兩點,求橢圓的方程.21.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.22.(10分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據三角函數的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結果.【詳解】根據題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數定義的應用和二倍角的正弦公式,考查計算能力.2、B【解析】
圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.3、C【解析】
先求出,再由,利用向量數量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.4、D【解析】
由成等差數列得,利用等比數列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數列的綜合,利用等差數列的性質建立方程求q是解題的關鍵,對于等比數列的通項公式也要熟練.5、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..6、D【解析】
根據題意,求出函數的導數,由函數的導數與函數單調性的關系分析可得在上為增函數,又由,分析可得答案.【詳解】解:根據題意,函數,其導數函數,則有在上恒成立,則在上為增函數;又由,則;故選:.【點睛】本題考查函數的導數與函數單調性的關系,涉及函數單調性的性質,屬于基礎題.7、C【解析】
在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現“做”“證”“算”,三步驟缺一不可,屬于基礎題.8、A【解析】
將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.9、B【解析】
根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.10、C【解析】
先求出復合函數在上是單調函數的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數,其充要條件為即.故選:C.【點睛】本題考查了復合函數的單調性的判斷問題,充要條件的判斷,屬于基礎題.11、D【解析】
充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.12、C【解析】由函數的圖象向右平移個單位得到,函數在區(qū)間上單調遞增,在區(qū)間上單調遞減,可得時,取得最大值,即,,,當時,解得,故選C.點睛:本題主要考查了三角函數圖象的平移變換和性質的靈活運用,屬于基礎題;據平移變換“左加右減,上加下減”的規(guī)律求解出,根據函數在區(qū)間上單調遞增,在區(qū)間上單調遞減可得時,取得最大值,求解可得實數的值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.14、【解析】
先求出所有的基本事件個數,再求出“抽取的三張卡片編號之和是偶數”這一事件包含的基本事件個數,利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.15、【解析】
設,,設,函數為奇函數,,函數單調遞增,,畫出簡圖,如圖所示,根據,解得答案.【詳解】,設,,則.原函數等價于函數,即有兩個解.設,則,函數為奇函數.,函數單調遞增,,,.當時,易知不成立;當時,根據對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據圖像知:故,即,根據對稱性知:.故答案為:.【點睛】本題考查了函數零點問題,意在考查學生的轉化能力和計算能力,畫出圖像是解題的關鍵.16、2【解析】
利用二項展開式的通項公式,二項式系數的性質,求得的值.【詳解】展開式通項為:且的展開式中的系數比的系數大,即:解得:(舍去)或本題正確結果:【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)當時,,與作差可得,即可得到數列是首項為1,公差為1的等差數列,即可求解;對取自然對數,則,即是以1為首項,以2為公比的等比數列,即可求解;(2)由(1)可得,再利用錯位相減法求解即可.【詳解】解:(1)因為,,①當時,,解得;當時,有,②由①②得,,又,所以,即數列是首項為1,公差為1的等差數列,故,又因為,且,取自然對數得,所以,又因為,所以是以1為首項,以2為公比的等比數列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點睛】本題考查由與的關系求通項公式,考查錯位相減法求數列的和.18、見解析【解析】
已知條件,需要證明的是,要想利用柯西不等式,需要的值,發(fā)現,則可以用柯西不等式.【詳解】,.由柯西不等式得,...【點睛】本題考查柯西不等式的應用,屬于基礎題.19、(1),眾數為150;(2);(3)【解析】
(1)由頻率直方圖分別求出各組距內的頻率,由此能求出這個開學季內市場需求量的眾數和平均數;(2)由已知條件推導出當時,,當時,,由此能將表示為的函數;(3)利用頻率分布直方圖能求出利潤不少于4800元的概率.【詳解】(1)由直方圖可估計需求量的眾數為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計需求量的平均數為:(2)當時,當時,∴(3)由(2)知當時,當時,得∴開學季利潤不少于4800元的需求量為由頻率分布直方圖可所求概率【點睛】本題考查頻率分布直方圖的應用,考查函數解析式的求法,考查概率的估計,是中檔題,解題時要注意頻率分布直方圖的合理運用.20、(Ⅰ);(Ⅱ).【解析】試題分析:(1)依題意,由點到直線的距離公式可得,又有,聯立可求離心率;(2)由(1)設橢圓方程,再設直線方程,與橢圓方程聯立,求得,令,可得,即得橢圓方程.試題解析:(Ⅰ)過點的直線方程為,則原點到直線的距離,由,得,解得離心率.(Ⅱ)由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直.設其直線方程為,代入(1)得.設,則,.由,得,解得.從而.于是.由,得,解得.故橢圓的方程為.21、(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉化可求,利用基本不等式可將轉化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.22、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時,.令,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保潔與員工合同范本
- 住宅加裝電梯工程合同范例
- 出售尼龍水箱合同范本
- 與政府合作合同范本
- 內控合同范本
- 協商撤銷合同范例
- 勞動合同范本 病假
- 單位租住房合同范本
- 個人蓋房合同范本
- 中醫(yī)醫(yī)聯體合同范本
- PPT用中國地圖(可編輯)
- 基于德育的農村中小學校園欺凌現象的解決對策優(yōu)秀獲獎科研論文
- 鐵路工程概預算-工程經濟管理培訓-課件
- 小學英語一般現在時-(演示)課件
- 面部激素依賴性皮炎的管理課件
- 盧卡奇教學講解課件
- 智慧環(huán)衛(wèi)項目建設方案
- 焊接作業(yè)現場環(huán)境溫度濕度記錄
- 長期護理保險待遇資格申請表
- 馬克思主義基本原理教案:第一章+教案
- 【腳手架計算書】 腳手架計算書詳細步驟
評論
0/150
提交評論