黑龍江省普通高等學(xué)校2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第1頁
黑龍江省普通高等學(xué)校2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第2頁
黑龍江省普通高等學(xué)校2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第3頁
黑龍江省普通高等學(xué)校2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第4頁
黑龍江省普通高等學(xué)校2025屆高三沖刺模擬數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省普通高等學(xué)校2025屆高三沖刺模擬數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)()的圖象的大致形狀是()A. B. C. D.2.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.43.在正方體中,,分別為,的中點(diǎn),則異面直線,所成角的余弦值為()A. B. C. D.4.如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.5.一袋中裝有個紅球和個黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.6.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)7.已知函數(shù),,若對任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.8.已知函數(shù),,則的極大值點(diǎn)為()A. B. C. D.9.若,則“”的一個充分不必要條件是A. B.C.且 D.或10.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.11.已知正方體的棱長為,,,分別是棱,,的中點(diǎn),給出下列四個命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.12.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)滿足,且當(dāng)時,又函數(shù),則函數(shù)在上的零點(diǎn)個數(shù)為___________.14.連續(xù)擲兩次骰子,分別得到的點(diǎn)數(shù)作為點(diǎn)的坐標(biāo),則點(diǎn)落在圓內(nèi)的概率為______________.15.的展開式中所有項(xiàng)的系數(shù)和為______,常數(shù)項(xiàng)為______.16.已知,,則與的夾角為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公司為了鼓勵運(yùn)動提高所有用戶的身體素質(zhì),特推出一款運(yùn)動計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動達(dá)人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:運(yùn)動達(dá)人非運(yùn)動達(dá)人總計(jì)男3560女26總計(jì)100(1)(i)將列聯(lián)表補(bǔ)充完整;(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?(2)將頻率視作概率,從該公司的所有人“運(yùn)動達(dá)人”中任意抽取3個用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.附:18.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機(jī)取出3個球(逐個有放回地抽?。媒Y(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實(shí)際付款7折8折9折原價(jià)(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?19.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時,求證:①;②.20.(12分)設(shè)函數(shù).(1)當(dāng)時,解不等式;(2)若的解集為,,求證:.21.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.22.(10分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點(diǎn)睛】識圖常用的方法(1)定性分析法:通過對問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計(jì)算法:通過定量的計(jì)算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.2、D【解析】可以是共4個,選D.3、D【解析】

連接,,因?yàn)椋詾楫惷嬷本€與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,取的中點(diǎn)為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因?yàn)椋詾楫惷嬷本€與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,則,,在等腰中,取的中點(diǎn)為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點(diǎn)睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計(jì)算能力.4、C【解析】

過作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時,取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因?yàn)椋云矫?,所以,?dāng)最大時,取得最大值,取的中點(diǎn),則,所以,因?yàn)?,所以點(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點(diǎn)睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.5、A【解析】

由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.6、B【解析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項(xiàng)判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項(xiàng)A,,所以,選項(xiàng)A錯誤;選項(xiàng)B,因?yàn)?,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項(xiàng)B正確;選項(xiàng)C,,所以,即,選項(xiàng)C錯誤;選項(xiàng)D,,選項(xiàng)D錯誤.故選:B.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合運(yùn)用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.7、C【解析】

將函數(shù)解析式化簡,并求得,根據(jù)當(dāng)時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時,,故函數(shù)在上單調(diào)遞增,當(dāng)時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.8、A【解析】

求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點(diǎn)即可.【詳解】因?yàn)?,故可得,令,因?yàn)椋士傻没?,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點(diǎn)為.故選:A.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點(diǎn),屬基礎(chǔ)題.9、C【解析】,∴,當(dāng)且僅當(dāng)時取等號.故“且”是“”的充分不必要條件.選C.10、B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑危?,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.11、C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.【點(diǎn)睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.12、D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

判斷函數(shù)為偶函數(shù),周期為2,判斷為偶函數(shù),計(jì)算,,畫出函數(shù)圖像,根據(jù)圖像到答案.【詳解】知,函數(shù)為偶函數(shù),,函數(shù)關(guān)于對稱。,故函數(shù)為周期為2的周期函數(shù),且。為偶函數(shù),,,當(dāng)時,,,函數(shù)先增后減。當(dāng)時,,,函數(shù)先增后減。在同一坐標(biāo)系下作出兩函數(shù)在上的圖像,發(fā)現(xiàn)在內(nèi)圖像共有1個公共點(diǎn),則函數(shù)在上的零點(diǎn)個數(shù)為1.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問題,確定函數(shù)的奇偶性,對稱性,周期性,畫出函數(shù)圖像是解題的關(guān)鍵.14、【解析】

連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.15、3-260【解析】

(1)令求得所有項(xiàng)的系數(shù)和;(2)先求出展開式中的常數(shù)項(xiàng)與含的系數(shù),再求展開式中的常數(shù)項(xiàng).【詳解】將代入,得所有項(xiàng)的系數(shù)和為3.因?yàn)榈恼归_式中含的項(xiàng)為,的展開式中含常數(shù)項(xiàng),所以的展開式中的常數(shù)項(xiàng)為.故答案為:3;-260【點(diǎn)睛】本題考查利用二項(xiàng)展開式的通項(xiàng)公式解決二項(xiàng)展開式的特殊項(xiàng)問題,屬于基礎(chǔ)題.16、【解析】

根據(jù)已知條件,去括號得:,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(i)填表見解析(ii)沒有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”(2)詳見解析【解析】

(1)(i)由已給數(shù)據(jù)可完成列聯(lián)表,(ii)計(jì)算出后可得;(2)由列聯(lián)表知從運(yùn)動達(dá)人中抽取1個用戶為女用戶的概率為,的取值為,,由二項(xiàng)分布概率公式計(jì)算出各概率得分布列,由期望公式計(jì)算期望.【詳解】解(1)(i)運(yùn)動達(dá)人非運(yùn)動達(dá)人總計(jì)男352560女142640總計(jì)4951100(ii)由列聯(lián)表得所以沒有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”(2)由列聯(lián)表知從運(yùn)動達(dá)人中抽取1個用戶為女用戶的概率為,.易知所以的分布列為0123.【點(diǎn)睛】本題考查列聯(lián)表,考查獨(dú)立性檢驗(yàn),考查隨機(jī)變量的概率分布列和期望.屬于中檔題.本題難點(diǎn)在于認(rèn)識到.18、(1)(2)選擇方案二更為劃算【解析】

(1)計(jì)算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計(jì)算概率得到數(shù)學(xué)期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,,則.因?yàn)?,所以選擇方案二更為劃算.【點(diǎn)睛】本題考查了概率的計(jì)算,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.19、(1)(2)①證明見解析②證明見解析【解析】

(1)首先根據(jù)直線關(guān)于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時,,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)?,所以,,由題意,解得.(2)因?yàn)椋?①令,則,則,且,,時,,單調(diào)遞減;時,,單調(diào)遞增.因?yàn)椋?,因?yàn)?,所以存在,使時,,單調(diào)遞增;時,,單調(diào)遞減;時,,單調(diào)遞增.又,所以時,,即,所以,即成立.②由①知成立,即有成立.令,即.所以時,,單調(diào)遞增;時,,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時,,即時,.【點(diǎn)睛】本小題考查函數(shù)圖象的對稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識;考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識.20、(1);(2)見解析.【解析】

(1)當(dāng)時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實(shí)數(shù),可得出,將代數(shù)式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進(jìn)而可證得結(jié)論.【詳解】(1)當(dāng)時,不等式為,且.當(dāng)時,由得,解得,此時;當(dāng)時,由得,該不等式不成立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論