《土木工程專業(yè)英語 第2版》 課件 Unit8 The Greening of Engineered Cementitious Composites_第1頁
《土木工程專業(yè)英語 第2版》 課件 Unit8 The Greening of Engineered Cementitious Composites_第2頁
《土木工程專業(yè)英語 第2版》 課件 Unit8 The Greening of Engineered Cementitious Composites_第3頁
《土木工程專業(yè)英語 第2版》 課件 Unit8 The Greening of Engineered Cementitious Composites_第4頁
《土木工程專業(yè)英語 第2版》 課件 Unit8 The Greening of Engineered Cementitious Composites_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Unit8TheGreeningofEngineeredCementitiousCompositesEnglishforCivilEngineering——Teacher:Prof.ZhengLuE-mail:luzheng111@(SchoolofCivilEngineering,TONGJIUNIVERSITY)Unit8TheGreeningofEngineeredCementitiousComposites8.1Introduction8.2ECCwithGreenBinder/Filler

8.2.1BenefitsofFlyAsh(FA)inECC

8.2.2CombiningFAandOtherAdditives8.2.3EngineeredGeopolymerComposites(EGC)8.2.4CountermeasurestoaPossibleShortageofFA

8.3ECCwithGreenAggregate

8.3.1NaturalSand8.3.2RecycledAggregate8.4ECCwithGreenFibers8.4.1ModificationinPVAFiber—DomesticorUnoiledPVAFiber8.4.2AdoptionofGreenFibers8.4.3FiberHybridization8.5SummaryandConclusions8.1Introduction

Engineeredcementitiouscomposites(ECC),sincetheirdevelopment,havebeenknownasaclassofcementitiousmaterialsuniquelypossessingsuperiorductility,strain-hardeningproperties,andmanyotheradvantagesovernormalconcrete.Forexample,ECCasafamilyofmaterialsattainstensilestraincapacityseveralhundredtimesthatofnormalconcrete.ThegoalofECCdesignistosuppressthewell-knownbrittlenessofcementitiousmaterials,infavorofmultiplemicrocracksundertension.工程用水泥基復(fù)合材料ECCstrain-hardening

應(yīng)變硬化;

brittleness

脆性

;

microcrack微裂縫8.1Introduction

AmongtraditionalECCcompositions,ordinaryPortlandcement(OPC),polyvinylalcohol(PVA)fiber,andsilicasandserveasbinder,fiberreinforcement,andfineaggregate,respectively.Ithasbeenrecommendedthatthesethreekeyingredientsbesubstitutedbygreeneralternativesbecauseofrisingglobalconcernsformoreenvironmentalsustainabilityintheconstructionindustry.HighenergyintensityandreleaseofhighlevelsofcarbondioxideduringtheproductionofcementaswellasthecarbonintensityofthefinemanufacturedsandandthesyntheticoilcoatedPVAfiberhaveattractedmuchattentionfromresearchersandproducers,leadingthemtoengageindevelopingmoreeco-friendlyECCthroughappropriatematerialselection.ECC組分ordinaryPortlandcement普通硅酸鹽水泥

;polyvinylalcohol聚乙烯醇

;silicasand硅砂

;ingredient成分

;eco-friendly環(huán)境友好型8.1Introduction

Inadditiontothegreeningintheproductionphase,theusephaseofECCalsostronglyinfluencesthesustainabilityofcivilinfrastructureduetothereducedmaintenanceneedsassociatedwiththedurabilityofthematerial.sustainability可持續(xù)性

;infrastructure基礎(chǔ)設(shè)施

;durability耐久性

8.2ECCwithGreenBinder/Filler

Supplementarycementitiousmaterials(SCMs)havebeenrecognizedaspromisingingredientsforenhancingthegreennessand/orperformanceofcementitiousbindersinconcrete.Someareintentionallyproduced,whileothersarefromwastestreamsfromdifferentindustrialsites(e.g.,coal-firedelectricpowerplants,steelmills,andsilica-metalplants).ThesematerialsareconsideredvaluableduetotheirreducedenvironmentalimpactcomparedwithOPC.Inthecaseofwastestreammaterials,theiruseasSCMscontributestosustainablepracticeinotherindustriesbeyondcementproductionandconcreteconstruction.補充膠凝材料的優(yōu)勢binders粘合劑

;intentionally有意地

8.2ECCwithGreenBinder/Filler

8.2.1BenefitsofFlyAsh(FA)inECCProducedasacoalcombustionresidueinthermalpowerstations,FAisawell-knownsubstituteforOPC.TheadvantagesofFAincludethemitigationofheatreleaserate,thereductionofCO2

emissionsandloweringofembodiedenergy,andenhancementofworkability.Becauseofitslowerheatofhydration,cementitiousmaterialsusingFAexperiencelessthermalcrackingrisks,resultinginimprovementoflong-termdurability.FA的優(yōu)點FA粉煤灰

;emission排放物

;workability和易性

;thermalcrackingrisk熱裂風(fēng)險

8.2ECCwithGreenBinder/Filler

8.2.2CombiningFAandOtherAdditivesSCMscombiningFAandotheradditiveshavebeenstudied,asameansoffurthergreeningECCwhilemaintainingductilityanddurability.Remarkably,FAisnotonlybeneficialasanOPCsubstitutebutalsopossessesfavorableinteractionswithothereco-friendlymaterials,asdiscussedbelow.FA與其他添加劑的組合additive添加劑

;substitute替代品

8.2ECCwithGreenBinder/Filler

1.HollowGlassMicrospheresandFAHollowglassmicrospheres(HGM),acontrolleddimensionhollowglassmaterialwithencapsulatedair,isconsideredasaneco-friendlyandeconomicalfillerinECCmixtures.HGMeffectivelylightenstheoverallmaterial,resultinginlowercompositedensityandinertia.Anotheradvantageofincorporatingthesphericalandsmooth-surfacedHGMinECCistheimprovedfreshproperties(e.g.,workability,flowability,compactability,ordispersionoffiber)ofthecomposite,whichislimitedbyalowwatertocementratioandthepresenceofmicrofibers.中空玻璃微珠HGMflowability流動性

;compactability密實性

;dispersion分散性

8.2ECCwithGreenBinder/Filler

2.MagnesiumOxide(MgO)andFAMagnesiumoxide(MgO)isapromisingcandidaterequiringlessenergythanOPCforthecalcinationprocess,whichinvolvestheheatingofinorganicmaterialstoremovevolatilecomponents.MgObindswithotheringredients(e.g.,fineaggregateorsyntheticfiber)inECCmixturewhenmixedwithaconcentratedsolutionofmagnesiumchloride(MgCl2),resultinginmagnesiumoxychloridecement(MOC).MgOcanserveasabinderinanotherwaythroughmineralcarbonation,whereCO2canbepositivelyutilizedtoactivatethebindingcapability.Inthiscase,incorporationofFA,aswellasMgOinECC,wasfoundeffectivetofurthersecuretheenvironmentalandeconomicadvantages,whileconsideringthemechanicalanddurabilityproperties.氧化鎂calcination煅燒

;inorganic無機

;magnesiumoxychloridecement氯化氧鎂水泥

8.2ECCwithGreenBinder/Filler

3.SolidWasteCeramicsandFASolidwasteceramicsderivedfromthemanufacturingoftablewareceramics,bathroomceramics,exteriorwallceramics,andfloortileceramicsraisegrowingconcernfortheenvironmentastheyarenotdegradableandarelikelytocontainharmfulsubstancesforland,air,orwaterresources.Attemptshavebeenmadetoutilizesuchwasteafterfabricationorcrushingandgrindingasbindersorascoarse/fineaggregateincementitiousmaterials.固廢陶瓷ceramic

陶瓷

;

exterior煅燒8.2ECCwithGreenBinder/Filler

8.2.3EngineeredGeopolymerComposites(EGC)FAisoneofthemostimportantingredientsinengineeredgeopolymercomposite(EGC),whichisdistinctfromECCintermsofthemechanismofchemicalreactionforhardening.ThatisbecauseOPCcanbecompletelysubstitutedbyFA(orotherindustrialbyproductssuchasGGBFS)forOPCastheprimarybinder.Whilethebinderisdifferent,EGCandECCshareacommoncompositedesignbasisfortensilestrain-hardening.Besidesitseco-friendliness,welldesignedFA-basedEGCpossessessimilartensile/flexuralproperties(e.g.,strain-hardeningbehaviorsalongwithdecentstrengthandductility)andperhapsbetterdurability(e.g.,lowerdryingshrinkageandbetterresistancetofreeze-thaw/wet-drycyclesoracidattack),comparedwithECC,althoughthecompressivestrengthislikelylower.工程地聚合物復(fù)合材料EGCfreeze-thaw/wet-drycycles凍融/干濕循環(huán)

;acidattack酸侵蝕

8.2ECCwithGreenBinder/Filler

8.2.4CountermeasurestoaPossibleShortageofFAAspresentedabove,FAhasplayedanimportantroleinpartiallyreplacingOPCasagreenerbinderinECC.Thereis,however,agrowingconcernoverthesupplyofFAduetodecreasingrelianceoncoalcombustionasameansofelectricitygenerationacrosstheworld,especiallyintheUSAandCanada.Theuseoftypicallyinexpensivenaturalgasorotherrenewablesources(e.g.,wind,geothermal,orsolarpower)hasbeenincreasingandisexpectedtokeepgrowing,insteadofcoalcombustionsecondarilyproducingFA.ThistrenddoesnotimplyanurgentneedtoshiftfromFAtootherSCMsbecausemorethan40%oftotalFAproducedisnotbeneficiallyutilized.DespitesuchoptimismregardingtheavailabilityofFA,thereareincreasingstudiesonalternativematerialstoFA,assummarizedinthesectionbelow.FA短缺的對策renewablesource可再生能源

8.2ECCwithGreenBinder/Filler

1.RiceHuskAsh(RHA)Ricehuskash(RHA)isanagriculturalmaterialobtainedbyburningricehusk.Aftercombustion,itistraditionallydisposedofinwaterstreamsorlandfillsaswaste.IthasbeenfoundthatRHAbecomessimilartosilicafume(SF)initschemicalcompositionwhenburntatacontrolledtemperatureandcondition,therebyattractingtheattentionofresearchers.稻殼灰combustion燃燒;silicafume硅灰8.2ECCwithGreenBinder/Filler

1.RiceHuskAsh(RHA)BothexperimentalstudiesclarifiedthattheinclusionofRHArefinedtheporedistributionandincreasedthetotalporevolume.Specifically,theportionoflargecapillarypores(e.g.,greaterthan100nm)wasreducedandthatofmiddle-sizedpores(e.g.,50-100nm)wasincreased.Themodifiedporestructurewasfoundtoimprovethecompressivestrength,tensilestrength,andtensilestraincapacity,comparedwithconventionalECC.TheenhancementofcompressiveandtensilestrengthwasattributedtothehigherdensityofRHA-includedECCmixtureowingtothepackingeffectandfillereffectofRHA.ThefinerparticlesizeofgroundRHA(comparedwithFA)reducesphysicalvoids,anditslargersurfaceareacreatesmoreagglomerationsitesforcementparticles.Theimprovementofthetensilestrainpropertywasattributedtoanarrowercrackwidthandalargernumberofcracks,resultingfromanincreasedpseudostrain-hardening(PSH)index.porestructure孔隙結(jié)構(gòu)

;pseudostrain-hardening偽應(yīng)變硬化8.2ECCwithGreenBinder/Filler

2.Ground-GlassPozzolans(GP)Ground-glasspozzolans(GP),alsoknownasglasspowder,hasbeenusedtocompletelyreplaceFAinECCbinders.GPisobtainedbygrindingpost-consumptionglassandisconsideredenvironmentallyfriendlywithacarbonfootprintof0.063kgCO2/kg.Forcomparison,FAhasacarbonfootprintof0.01kgCO2/kgorless,whichisnearlynegligible.TheparticlesizeofGPiscontrolledfrom1μmto100μmequivalenttothefinenessofFA.GPwasfoundtodensifyECC,improvingcompressive,tensile(thefirstcrackorpostcrackstrength),andflexurestrengthatearlyages.Thiswasattributedtothepackingeffectandfiller/nucleationeffect.Theirregularly-shapedGPprovidesalargersurfaceareathanthespherically-shapedFAfornewpozzolaniccalciumsilicatehydrate(C-S-H)withalowCalcium/Silicaratioandhighalkalioraluminumcontent,whichendowsECCwithadenserstructure.玻璃粉alkali堿

8.2ECCwithGreenBinder/Filler

3.Limestonecalcinedclay(LCC)Limestoneandkaoliniteclayareabundantacrosstheworld.Limestonecalcinedclay(LCC)isproducedbyblendinglimestoneandcalcinedclay.Calcinedclay,whichisalowpuritymetakaolin,isobtainedbycalcinationoflow-gradekaoliniteclayat600-800℃,whereasOPCrequiresso-calledclinkerwhichisaprimaryingredientofOPCandisobtainedthroughcalcinationatupto1450℃,muchhigherthanthatformetakaolin.LCCdisplacespartofOPCtomake

limestonecalcinedclaycement(LC3).TheoverallenergyrequiredtoproduceLC3,andcorrespondingCO2emissionsaremuchless(e.g.,22%lessenergyconsumptionand20%-35%lessCO2emissions)thanthoseforOPC.石灰石煅燒粘土limestone石灰石

;kaoliniteclay高嶺土;metakaolin偏高嶺土;8.3ECCwithGreenAggregate

8.3.1NaturalSandOneofthemostefficientwaystoreducetheeconomicandenvironmentalimpactsinvolvedwiththeproductionandtransportofsandistoprioritizelocallyavailablematerialsformassiveinfrastructureprojects.Specificallyformarineorcoastalconstructions,seasandcanbeattractive.UseofseasandandseawaterfornormalECC(containingPVAfiberandFA),wasfoundtoslightlydecreasetensilestrainandtensilestrengthbutpromotecompressivestrengthandsettingtime.Alternatively,river-sand(RS)iseconomicalincomparisontoultrafinesilicasand(USS).天然砂ultrafinesilicasand超細硅砂

8.3ECCwithGreenAggregate

8.3.2RecycledAggregateApartfromnaturalaggregates,recycledaggregateoffersaplausiblegreenalternative.Constructionanddemolition(C&D)debrisisatypeofwastethatisnotincludedinmunicipalsolidwasteandincludesconcrete,asphaltconcrete,steel,woodproducts,drywallandplaster,brickandclaytile,andasphaltshingles.In2018,C&Ddebrisof540megatonswasproducedandalmost25%ofitwasdisposedofinlandfillsintheUnitedStates,accordingtotheU.S.EnvironmentalandProtectionAgency.Therehasbeenagrowinginterestinre-purposingthatlandfillwastebyusingitasrecycledindustrialaggregate,eventuallyaimingatacleanerandmoreeconomicalsubstitutionforUSS(e.g.,recycledconcreteaggregatecosts11timeslessthanUSS).再生骨料naturalaggregate天然骨料

;recycledaggregate再生骨料

;debris碎片8.4ECCwithGreenFibers

Polyvinylalcohol(PVA)isasyntheticpolymerthathasreceivedconsiderableattentioninawiderangeofapplicationsbecauseofitsexcellentmechanicalproperties,thermalstability,andchemicalresistance.Further,thefiberdiameter(about40μm)issmallenoughtoenhancefiber/matrixinterfacialsurfaceareacriticalforcompositeductilityinthehardenedstatebutlargeenoughtoenablegoodworkabilityinthefreshstate.PVAfiberwasfirstcommercializedin1950,withKurarayCo.,Ltd(Japan)astheworldwideproducer.TheuseofPVAfiberimportedfromJapaninothercountries,however,isexpensive,whichcanconstituteroughly50%~90%ofthetotalcostneededtoproduceconventionalECC.Furthermore,PVApossessesarelativelyhighembodiedcarbonandenergyfootprintasitisderivedfromvinylacetaterefinedfromfossilfuels.聚乙烯醇PVAsynthetic合成的

;thermalstability熱穩(wěn)定性

;vinylacetate醋酸乙烯酯8.4ECCwithGreenFibers

8.4.1ModificationinPVAFiber—DomesticorUnoiledPVAFiberThePVAfiberdesignedforECChasanoilcoatingthatintentionallyreducestheinterfacialfrictional/chemicalbondsbetweenthefiberandcementmatrixtoinducecontrolledfiberslippageforsuperiorductilityandstrain-hardeningbehaviorofECC.ForgreenerECC,thefocusinthispaper,somestudieshaveattemptedtousedomesticallyproducedunoiledPVAfiber.ThedomesticPVAfiberiseffectiveforreducingtheenergyinvolvedintransportationandisfourtoeighttimeslessincostthanthatofconventional(i.e.,importedandoil-coated)PVAfiber.Wangetal.investigatedECCreinforcedwithunoiledPVAfiberlocallyproducedinChina.Theauthorsconfirmedreducedcompositetensilestraincapacitybutretainedcompressiveandflexuralstrength.Possiblecountermeasuresmaybetoincreasethewatertocementratioorflyashreplacement(ofcement)ratio.Despitetheexpectedreducedcompressivestrength,theresultingECCmaybesuitableforcertainapplications.Otherattemptsinvolvinglocallyproducedoil-coatedPVAfiberresultedinECCswithcompetitivetensilepropertiesandotherswithrelativelylowtensileductility.PVA纖維的改性frictional/chemicalbond摩擦/化學(xué)鍵

;oil-coated涂油的

8.4ECCwithGreenFibers

8.4.2AdoptionofGreenFibersFromtheenvironmentalandeconomicpointsofview,somemanmadeandnaturalfibershavethepotentialtoreplaceconventionalPVAfiber.Theseincludepolypropylene(PP)fiber,polyethylene(PE)fiber,basaltfiber(BF),glassfiber(GF),andplantfiber,whichshallbeintroducedinthissection.綠色纖維polypropylenefiber聚丙烯纖維

;polyethylenefiber聚乙烯纖維

;basaltfiber玄武巖纖維

;glassfiber玻璃纖維

;plantfiber植物纖維

8.4ECCwithGreenFibers

1.Polypropylene(PP)FiberPolypropylene(PP)fiberischeaperandlessenergy-intensivethancoatedPVAfiberaswellasmoredomesticallyaccessibleinmanycountrieswherePVAfiberisimportedfromJapan.ThisalternativefiberhasgeneratedECCswithcomparableorhighertensileductilityordurabilityofPVA-ECC.SomePPfibersalsorequiresurfacetreatmentoverconcerninaging,relativelylowchemicalbonding(duetoitshydrophobicity),andtoimprovefiberdispersionduringmixingcausedbyitshighaspectratio(i.e.,lengthtodiameterratio).Toenhancetheirtensilestrength,PPfibershavehighdrawratiosresultinginalowerdiameter(e.g.,12μm)comparedtothatofPVAfibers(~40μm).Thissmallerdiameterenhancescompositetensilepropertiesbyhavingalargerfiber/matrixcontactsurfaceareabutalsoworsensworkabilityandfiberdispersionuniformity.hydrophobicity疏水性

;fiber/matrixcontactsurfacearea纖維/基體接觸表面積

8.4ECCwithGreenFibers

2.HighModulusPolyethylene(PE)FiberPolyethylene(PE)fiberpossesseshighertensilestrength(tenacity),higherYoung’smodulus,lowerdensity,butslightlyhigherembodiedenergyandCO2(i.e.,perunitmass)thanthoseofPVAfiber.PEfiberendowsECCwiththemostoutstandingtechnicalperformancecapabilitiesbeyondPVAfiberbyachievinghightensile/compressivestrengthandstraincapacity.Tofullyutilizeitsextraordinarytensilestrength,surfacetreatmentsusingozone,silanecouplingagents,orgrapheneoxidehavebeenexploitedtoenhanceinterfacialbondinglimitedbyPE’shydrophobicity.Young’smodulus疏水性

;silanecouplingagents硅烷偶聯(lián)劑

;graphene石墨烯

8.4ECCwithGreenFibers

3.BasaltFiber(BF)Basaltfiber(BF),aninorganicmaterialproducedbymeltingbasaltathightemperatures(approximately1200℃to1500℃),hasattractedattentionasahigh-temperatureresistant,relativelyinexpensive,chemicallystable,andeco-friendlyalternativetoPVAfiber.TherelativelyhighembodiedcarbonofBFwhenmeasuredonaunitvolumebasisisduetothehigherdensityofthismineralfibercomparedespeciallytolowdensitysyntheticfibers.ThisimpliesacarbonfootprintpenaltytoBFasfiberreinforcementperformanceinacompositeisbasedonvolumefractionratherthanweightfractionofitsingredients.Xuetal.reportedtensilepropertiesofBF-ECC.Whiletensilestrainhardeningwasachieved,thetensileductilitywaslimitedtolessthan1%.AmajoradvantageofBF-ECCisthatthemicrocrackwidthisextremelytight,typicallybelow10μm.Thistightcrackisassociatedwiththehighstiffnessofbasaltfibersanditsstrongbondtothecementitiousmatrix.玄武巖纖維

8.4ECCwithGreenFibers

4.GlassFiber(GF)Glassfiber(GF),mostlyderivedfromsilicateglasses,haslowermaterialsustainabilityindicatorswhencomparedwithPVAfiber.Forexample,theembodiedenergyandCO2emissionspervolumeofGFareroughlytwoandfivetimeslessthanthoseofPVAfiber.GFispronetocorrodeorbreakinhighalkalienvironments;however,mineraladmixture(e.g.,flyash,silicafume,orslag)canmitigatethehighalkalinitygeneratedbycementhydration,leadingtofurthergreeninginECC.Alkali-resistant(AR)glassfiberhasbeendeveloped.However,durabilityconcernappearstoremain.Theflexuraltoughnessandductilityaswellasmodulusofrupture(MOR),slightlyincreasedwithincreasingGFcontent.TheMORofGF-ECCincreasedwithtimeasaresultofincreasedmortarmatrixstrengthandfiber/matrixbondstrength.silicateglasses硅酸鹽玻璃;mineraladmixture礦物摻合料;modulusofrupture斷裂模量

8.4ECCwithGreenFibers

5.PlantFibersAsafamilyofnaturalfibers,plantfibersfromtheagriculturalsectorareconsideredsustainablesincetheyarebiodegradable,renewable,andtherebylesscarbon/cost-intensivethanmostman-madefibers.Themechanicalpropertiesofsuchnaturalfibers,whichvaryduetotheirvariouschemicalcompositionsandmicrostructures,aresubstantiallybelowthoseofPVAfiber,evenaftersomefiberprocessing(e.g.,shapingorheat/seawatertreatment).Plantfibersgenerallyhavelowerdensityandthermalconductivity.Thesepropertiesimplythatplantfiberscanplayacertainroleinnon-structuralelementssuchasbuildingcladdingorfacade,wherenosignificantloadingisexpected.Concernsoflowdurabilityofplantfibersinanalkalineenvironmentinthecementitiousmatrixcanbeaddressedtosomedegreebyeitherproperfibertreatmentormatrixmodification.biodegradable可生物降解的;facade立面

8.4ECCwithGreenFibers

8.4.3FiberHybridization1.PolyethyleneTerephthalate(PET)FiberandPVAFiberPolyethyleneterephthalate(PET)iswidelyusedinplasticproducts,especiallyinthefoodandbeverageindustry.AsignificantamountofPETisdisposedofinlandfillsaswasteatendoflife(e.g.,morethan75%of32megatonsofPETproductintheU.S.endedupinlandfillin2018),eventhoughtherecyclingofPEThasbeengraduallyincreasing.TheembodiedenergyandcostofthehybridPET-PVA-ECCshowedover40%reduction,whileCO2emissionwasreducedbymorethan50%ofthoseoftypicalECCwithPVAfiberonly.ThesegreencredentialscouldbediminishedifadditionalprocessingincludingsurfacetreatmentsareemployedtoimprovethePETfiber.ThesignificantneedtorecyclewastePETfromconsumerproductsprovidesimpetustofurtherinvestigationsofPETfiberandECCcontainin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論