版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Unit8TheGreeningofEngineeredCementitiousCompositesEnglishforCivilEngineering——Teacher:Prof.ZhengLuE-mail:luzheng111@(SchoolofCivilEngineering,TONGJIUNIVERSITY)Unit8TheGreeningofEngineeredCementitiousComposites8.1Introduction8.2ECCwithGreenBinder/Filler
8.2.1BenefitsofFlyAsh(FA)inECC
8.2.2CombiningFAandOtherAdditives8.2.3EngineeredGeopolymerComposites(EGC)8.2.4CountermeasurestoaPossibleShortageofFA
8.3ECCwithGreenAggregate
8.3.1NaturalSand8.3.2RecycledAggregate8.4ECCwithGreenFibers8.4.1ModificationinPVAFiber—DomesticorUnoiledPVAFiber8.4.2AdoptionofGreenFibers8.4.3FiberHybridization8.5SummaryandConclusions8.1Introduction
Engineeredcementitiouscomposites(ECC),sincetheirdevelopment,havebeenknownasaclassofcementitiousmaterialsuniquelypossessingsuperiorductility,strain-hardeningproperties,andmanyotheradvantagesovernormalconcrete.Forexample,ECCasafamilyofmaterialsattainstensilestraincapacityseveralhundredtimesthatofnormalconcrete.ThegoalofECCdesignistosuppressthewell-knownbrittlenessofcementitiousmaterials,infavorofmultiplemicrocracksundertension.工程用水泥基復(fù)合材料ECCstrain-hardening
應(yīng)變硬化;
brittleness
脆性
;
microcrack微裂縫8.1Introduction
AmongtraditionalECCcompositions,ordinaryPortlandcement(OPC),polyvinylalcohol(PVA)fiber,andsilicasandserveasbinder,fiberreinforcement,andfineaggregate,respectively.Ithasbeenrecommendedthatthesethreekeyingredientsbesubstitutedbygreeneralternativesbecauseofrisingglobalconcernsformoreenvironmentalsustainabilityintheconstructionindustry.HighenergyintensityandreleaseofhighlevelsofcarbondioxideduringtheproductionofcementaswellasthecarbonintensityofthefinemanufacturedsandandthesyntheticoilcoatedPVAfiberhaveattractedmuchattentionfromresearchersandproducers,leadingthemtoengageindevelopingmoreeco-friendlyECCthroughappropriatematerialselection.ECC組分ordinaryPortlandcement普通硅酸鹽水泥
;polyvinylalcohol聚乙烯醇
;silicasand硅砂
;ingredient成分
;eco-friendly環(huán)境友好型8.1Introduction
Inadditiontothegreeningintheproductionphase,theusephaseofECCalsostronglyinfluencesthesustainabilityofcivilinfrastructureduetothereducedmaintenanceneedsassociatedwiththedurabilityofthematerial.sustainability可持續(xù)性
;infrastructure基礎(chǔ)設(shè)施
;durability耐久性
8.2ECCwithGreenBinder/Filler
Supplementarycementitiousmaterials(SCMs)havebeenrecognizedaspromisingingredientsforenhancingthegreennessand/orperformanceofcementitiousbindersinconcrete.Someareintentionallyproduced,whileothersarefromwastestreamsfromdifferentindustrialsites(e.g.,coal-firedelectricpowerplants,steelmills,andsilica-metalplants).ThesematerialsareconsideredvaluableduetotheirreducedenvironmentalimpactcomparedwithOPC.Inthecaseofwastestreammaterials,theiruseasSCMscontributestosustainablepracticeinotherindustriesbeyondcementproductionandconcreteconstruction.補充膠凝材料的優(yōu)勢binders粘合劑
;intentionally有意地
8.2ECCwithGreenBinder/Filler
8.2.1BenefitsofFlyAsh(FA)inECCProducedasacoalcombustionresidueinthermalpowerstations,FAisawell-knownsubstituteforOPC.TheadvantagesofFAincludethemitigationofheatreleaserate,thereductionofCO2
emissionsandloweringofembodiedenergy,andenhancementofworkability.Becauseofitslowerheatofhydration,cementitiousmaterialsusingFAexperiencelessthermalcrackingrisks,resultinginimprovementoflong-termdurability.FA的優(yōu)點FA粉煤灰
;emission排放物
;workability和易性
;thermalcrackingrisk熱裂風(fēng)險
8.2ECCwithGreenBinder/Filler
8.2.2CombiningFAandOtherAdditivesSCMscombiningFAandotheradditiveshavebeenstudied,asameansoffurthergreeningECCwhilemaintainingductilityanddurability.Remarkably,FAisnotonlybeneficialasanOPCsubstitutebutalsopossessesfavorableinteractionswithothereco-friendlymaterials,asdiscussedbelow.FA與其他添加劑的組合additive添加劑
;substitute替代品
8.2ECCwithGreenBinder/Filler
1.HollowGlassMicrospheresandFAHollowglassmicrospheres(HGM),acontrolleddimensionhollowglassmaterialwithencapsulatedair,isconsideredasaneco-friendlyandeconomicalfillerinECCmixtures.HGMeffectivelylightenstheoverallmaterial,resultinginlowercompositedensityandinertia.Anotheradvantageofincorporatingthesphericalandsmooth-surfacedHGMinECCistheimprovedfreshproperties(e.g.,workability,flowability,compactability,ordispersionoffiber)ofthecomposite,whichislimitedbyalowwatertocementratioandthepresenceofmicrofibers.中空玻璃微珠HGMflowability流動性
;compactability密實性
;dispersion分散性
8.2ECCwithGreenBinder/Filler
2.MagnesiumOxide(MgO)andFAMagnesiumoxide(MgO)isapromisingcandidaterequiringlessenergythanOPCforthecalcinationprocess,whichinvolvestheheatingofinorganicmaterialstoremovevolatilecomponents.MgObindswithotheringredients(e.g.,fineaggregateorsyntheticfiber)inECCmixturewhenmixedwithaconcentratedsolutionofmagnesiumchloride(MgCl2),resultinginmagnesiumoxychloridecement(MOC).MgOcanserveasabinderinanotherwaythroughmineralcarbonation,whereCO2canbepositivelyutilizedtoactivatethebindingcapability.Inthiscase,incorporationofFA,aswellasMgOinECC,wasfoundeffectivetofurthersecuretheenvironmentalandeconomicadvantages,whileconsideringthemechanicalanddurabilityproperties.氧化鎂calcination煅燒
;inorganic無機
;magnesiumoxychloridecement氯化氧鎂水泥
8.2ECCwithGreenBinder/Filler
3.SolidWasteCeramicsandFASolidwasteceramicsderivedfromthemanufacturingoftablewareceramics,bathroomceramics,exteriorwallceramics,andfloortileceramicsraisegrowingconcernfortheenvironmentastheyarenotdegradableandarelikelytocontainharmfulsubstancesforland,air,orwaterresources.Attemptshavebeenmadetoutilizesuchwasteafterfabricationorcrushingandgrindingasbindersorascoarse/fineaggregateincementitiousmaterials.固廢陶瓷ceramic
陶瓷
;
exterior煅燒8.2ECCwithGreenBinder/Filler
8.2.3EngineeredGeopolymerComposites(EGC)FAisoneofthemostimportantingredientsinengineeredgeopolymercomposite(EGC),whichisdistinctfromECCintermsofthemechanismofchemicalreactionforhardening.ThatisbecauseOPCcanbecompletelysubstitutedbyFA(orotherindustrialbyproductssuchasGGBFS)forOPCastheprimarybinder.Whilethebinderisdifferent,EGCandECCshareacommoncompositedesignbasisfortensilestrain-hardening.Besidesitseco-friendliness,welldesignedFA-basedEGCpossessessimilartensile/flexuralproperties(e.g.,strain-hardeningbehaviorsalongwithdecentstrengthandductility)andperhapsbetterdurability(e.g.,lowerdryingshrinkageandbetterresistancetofreeze-thaw/wet-drycyclesoracidattack),comparedwithECC,althoughthecompressivestrengthislikelylower.工程地聚合物復(fù)合材料EGCfreeze-thaw/wet-drycycles凍融/干濕循環(huán)
;acidattack酸侵蝕
8.2ECCwithGreenBinder/Filler
8.2.4CountermeasurestoaPossibleShortageofFAAspresentedabove,FAhasplayedanimportantroleinpartiallyreplacingOPCasagreenerbinderinECC.Thereis,however,agrowingconcernoverthesupplyofFAduetodecreasingrelianceoncoalcombustionasameansofelectricitygenerationacrosstheworld,especiallyintheUSAandCanada.Theuseoftypicallyinexpensivenaturalgasorotherrenewablesources(e.g.,wind,geothermal,orsolarpower)hasbeenincreasingandisexpectedtokeepgrowing,insteadofcoalcombustionsecondarilyproducingFA.ThistrenddoesnotimplyanurgentneedtoshiftfromFAtootherSCMsbecausemorethan40%oftotalFAproducedisnotbeneficiallyutilized.DespitesuchoptimismregardingtheavailabilityofFA,thereareincreasingstudiesonalternativematerialstoFA,assummarizedinthesectionbelow.FA短缺的對策renewablesource可再生能源
8.2ECCwithGreenBinder/Filler
1.RiceHuskAsh(RHA)Ricehuskash(RHA)isanagriculturalmaterialobtainedbyburningricehusk.Aftercombustion,itistraditionallydisposedofinwaterstreamsorlandfillsaswaste.IthasbeenfoundthatRHAbecomessimilartosilicafume(SF)initschemicalcompositionwhenburntatacontrolledtemperatureandcondition,therebyattractingtheattentionofresearchers.稻殼灰combustion燃燒;silicafume硅灰8.2ECCwithGreenBinder/Filler
1.RiceHuskAsh(RHA)BothexperimentalstudiesclarifiedthattheinclusionofRHArefinedtheporedistributionandincreasedthetotalporevolume.Specifically,theportionoflargecapillarypores(e.g.,greaterthan100nm)wasreducedandthatofmiddle-sizedpores(e.g.,50-100nm)wasincreased.Themodifiedporestructurewasfoundtoimprovethecompressivestrength,tensilestrength,andtensilestraincapacity,comparedwithconventionalECC.TheenhancementofcompressiveandtensilestrengthwasattributedtothehigherdensityofRHA-includedECCmixtureowingtothepackingeffectandfillereffectofRHA.ThefinerparticlesizeofgroundRHA(comparedwithFA)reducesphysicalvoids,anditslargersurfaceareacreatesmoreagglomerationsitesforcementparticles.Theimprovementofthetensilestrainpropertywasattributedtoanarrowercrackwidthandalargernumberofcracks,resultingfromanincreasedpseudostrain-hardening(PSH)index.porestructure孔隙結(jié)構(gòu)
;pseudostrain-hardening偽應(yīng)變硬化8.2ECCwithGreenBinder/Filler
2.Ground-GlassPozzolans(GP)Ground-glasspozzolans(GP),alsoknownasglasspowder,hasbeenusedtocompletelyreplaceFAinECCbinders.GPisobtainedbygrindingpost-consumptionglassandisconsideredenvironmentallyfriendlywithacarbonfootprintof0.063kgCO2/kg.Forcomparison,FAhasacarbonfootprintof0.01kgCO2/kgorless,whichisnearlynegligible.TheparticlesizeofGPiscontrolledfrom1μmto100μmequivalenttothefinenessofFA.GPwasfoundtodensifyECC,improvingcompressive,tensile(thefirstcrackorpostcrackstrength),andflexurestrengthatearlyages.Thiswasattributedtothepackingeffectandfiller/nucleationeffect.Theirregularly-shapedGPprovidesalargersurfaceareathanthespherically-shapedFAfornewpozzolaniccalciumsilicatehydrate(C-S-H)withalowCalcium/Silicaratioandhighalkalioraluminumcontent,whichendowsECCwithadenserstructure.玻璃粉alkali堿
8.2ECCwithGreenBinder/Filler
3.Limestonecalcinedclay(LCC)Limestoneandkaoliniteclayareabundantacrosstheworld.Limestonecalcinedclay(LCC)isproducedbyblendinglimestoneandcalcinedclay.Calcinedclay,whichisalowpuritymetakaolin,isobtainedbycalcinationoflow-gradekaoliniteclayat600-800℃,whereasOPCrequiresso-calledclinkerwhichisaprimaryingredientofOPCandisobtainedthroughcalcinationatupto1450℃,muchhigherthanthatformetakaolin.LCCdisplacespartofOPCtomake
limestonecalcinedclaycement(LC3).TheoverallenergyrequiredtoproduceLC3,andcorrespondingCO2emissionsaremuchless(e.g.,22%lessenergyconsumptionand20%-35%lessCO2emissions)thanthoseforOPC.石灰石煅燒粘土limestone石灰石
;kaoliniteclay高嶺土;metakaolin偏高嶺土;8.3ECCwithGreenAggregate
8.3.1NaturalSandOneofthemostefficientwaystoreducetheeconomicandenvironmentalimpactsinvolvedwiththeproductionandtransportofsandistoprioritizelocallyavailablematerialsformassiveinfrastructureprojects.Specificallyformarineorcoastalconstructions,seasandcanbeattractive.UseofseasandandseawaterfornormalECC(containingPVAfiberandFA),wasfoundtoslightlydecreasetensilestrainandtensilestrengthbutpromotecompressivestrengthandsettingtime.Alternatively,river-sand(RS)iseconomicalincomparisontoultrafinesilicasand(USS).天然砂ultrafinesilicasand超細硅砂
8.3ECCwithGreenAggregate
8.3.2RecycledAggregateApartfromnaturalaggregates,recycledaggregateoffersaplausiblegreenalternative.Constructionanddemolition(C&D)debrisisatypeofwastethatisnotincludedinmunicipalsolidwasteandincludesconcrete,asphaltconcrete,steel,woodproducts,drywallandplaster,brickandclaytile,andasphaltshingles.In2018,C&Ddebrisof540megatonswasproducedandalmost25%ofitwasdisposedofinlandfillsintheUnitedStates,accordingtotheU.S.EnvironmentalandProtectionAgency.Therehasbeenagrowinginterestinre-purposingthatlandfillwastebyusingitasrecycledindustrialaggregate,eventuallyaimingatacleanerandmoreeconomicalsubstitutionforUSS(e.g.,recycledconcreteaggregatecosts11timeslessthanUSS).再生骨料naturalaggregate天然骨料
;recycledaggregate再生骨料
;debris碎片8.4ECCwithGreenFibers
Polyvinylalcohol(PVA)isasyntheticpolymerthathasreceivedconsiderableattentioninawiderangeofapplicationsbecauseofitsexcellentmechanicalproperties,thermalstability,andchemicalresistance.Further,thefiberdiameter(about40μm)issmallenoughtoenhancefiber/matrixinterfacialsurfaceareacriticalforcompositeductilityinthehardenedstatebutlargeenoughtoenablegoodworkabilityinthefreshstate.PVAfiberwasfirstcommercializedin1950,withKurarayCo.,Ltd(Japan)astheworldwideproducer.TheuseofPVAfiberimportedfromJapaninothercountries,however,isexpensive,whichcanconstituteroughly50%~90%ofthetotalcostneededtoproduceconventionalECC.Furthermore,PVApossessesarelativelyhighembodiedcarbonandenergyfootprintasitisderivedfromvinylacetaterefinedfromfossilfuels.聚乙烯醇PVAsynthetic合成的
;thermalstability熱穩(wěn)定性
;vinylacetate醋酸乙烯酯8.4ECCwithGreenFibers
8.4.1ModificationinPVAFiber—DomesticorUnoiledPVAFiberThePVAfiberdesignedforECChasanoilcoatingthatintentionallyreducestheinterfacialfrictional/chemicalbondsbetweenthefiberandcementmatrixtoinducecontrolledfiberslippageforsuperiorductilityandstrain-hardeningbehaviorofECC.ForgreenerECC,thefocusinthispaper,somestudieshaveattemptedtousedomesticallyproducedunoiledPVAfiber.ThedomesticPVAfiberiseffectiveforreducingtheenergyinvolvedintransportationandisfourtoeighttimeslessincostthanthatofconventional(i.e.,importedandoil-coated)PVAfiber.Wangetal.investigatedECCreinforcedwithunoiledPVAfiberlocallyproducedinChina.Theauthorsconfirmedreducedcompositetensilestraincapacitybutretainedcompressiveandflexuralstrength.Possiblecountermeasuresmaybetoincreasethewatertocementratioorflyashreplacement(ofcement)ratio.Despitetheexpectedreducedcompressivestrength,theresultingECCmaybesuitableforcertainapplications.Otherattemptsinvolvinglocallyproducedoil-coatedPVAfiberresultedinECCswithcompetitivetensilepropertiesandotherswithrelativelylowtensileductility.PVA纖維的改性frictional/chemicalbond摩擦/化學(xué)鍵
;oil-coated涂油的
8.4ECCwithGreenFibers
8.4.2AdoptionofGreenFibersFromtheenvironmentalandeconomicpointsofview,somemanmadeandnaturalfibershavethepotentialtoreplaceconventionalPVAfiber.Theseincludepolypropylene(PP)fiber,polyethylene(PE)fiber,basaltfiber(BF),glassfiber(GF),andplantfiber,whichshallbeintroducedinthissection.綠色纖維polypropylenefiber聚丙烯纖維
;polyethylenefiber聚乙烯纖維
;basaltfiber玄武巖纖維
;glassfiber玻璃纖維
;plantfiber植物纖維
8.4ECCwithGreenFibers
1.Polypropylene(PP)FiberPolypropylene(PP)fiberischeaperandlessenergy-intensivethancoatedPVAfiberaswellasmoredomesticallyaccessibleinmanycountrieswherePVAfiberisimportedfromJapan.ThisalternativefiberhasgeneratedECCswithcomparableorhighertensileductilityordurabilityofPVA-ECC.SomePPfibersalsorequiresurfacetreatmentoverconcerninaging,relativelylowchemicalbonding(duetoitshydrophobicity),andtoimprovefiberdispersionduringmixingcausedbyitshighaspectratio(i.e.,lengthtodiameterratio).Toenhancetheirtensilestrength,PPfibershavehighdrawratiosresultinginalowerdiameter(e.g.,12μm)comparedtothatofPVAfibers(~40μm).Thissmallerdiameterenhancescompositetensilepropertiesbyhavingalargerfiber/matrixcontactsurfaceareabutalsoworsensworkabilityandfiberdispersionuniformity.hydrophobicity疏水性
;fiber/matrixcontactsurfacearea纖維/基體接觸表面積
8.4ECCwithGreenFibers
2.HighModulusPolyethylene(PE)FiberPolyethylene(PE)fiberpossesseshighertensilestrength(tenacity),higherYoung’smodulus,lowerdensity,butslightlyhigherembodiedenergyandCO2(i.e.,perunitmass)thanthoseofPVAfiber.PEfiberendowsECCwiththemostoutstandingtechnicalperformancecapabilitiesbeyondPVAfiberbyachievinghightensile/compressivestrengthandstraincapacity.Tofullyutilizeitsextraordinarytensilestrength,surfacetreatmentsusingozone,silanecouplingagents,orgrapheneoxidehavebeenexploitedtoenhanceinterfacialbondinglimitedbyPE’shydrophobicity.Young’smodulus疏水性
;silanecouplingagents硅烷偶聯(lián)劑
;graphene石墨烯
8.4ECCwithGreenFibers
3.BasaltFiber(BF)Basaltfiber(BF),aninorganicmaterialproducedbymeltingbasaltathightemperatures(approximately1200℃to1500℃),hasattractedattentionasahigh-temperatureresistant,relativelyinexpensive,chemicallystable,andeco-friendlyalternativetoPVAfiber.TherelativelyhighembodiedcarbonofBFwhenmeasuredonaunitvolumebasisisduetothehigherdensityofthismineralfibercomparedespeciallytolowdensitysyntheticfibers.ThisimpliesacarbonfootprintpenaltytoBFasfiberreinforcementperformanceinacompositeisbasedonvolumefractionratherthanweightfractionofitsingredients.Xuetal.reportedtensilepropertiesofBF-ECC.Whiletensilestrainhardeningwasachieved,thetensileductilitywaslimitedtolessthan1%.AmajoradvantageofBF-ECCisthatthemicrocrackwidthisextremelytight,typicallybelow10μm.Thistightcrackisassociatedwiththehighstiffnessofbasaltfibersanditsstrongbondtothecementitiousmatrix.玄武巖纖維
8.4ECCwithGreenFibers
4.GlassFiber(GF)Glassfiber(GF),mostlyderivedfromsilicateglasses,haslowermaterialsustainabilityindicatorswhencomparedwithPVAfiber.Forexample,theembodiedenergyandCO2emissionspervolumeofGFareroughlytwoandfivetimeslessthanthoseofPVAfiber.GFispronetocorrodeorbreakinhighalkalienvironments;however,mineraladmixture(e.g.,flyash,silicafume,orslag)canmitigatethehighalkalinitygeneratedbycementhydration,leadingtofurthergreeninginECC.Alkali-resistant(AR)glassfiberhasbeendeveloped.However,durabilityconcernappearstoremain.Theflexuraltoughnessandductilityaswellasmodulusofrupture(MOR),slightlyincreasedwithincreasingGFcontent.TheMORofGF-ECCincreasedwithtimeasaresultofincreasedmortarmatrixstrengthandfiber/matrixbondstrength.silicateglasses硅酸鹽玻璃;mineraladmixture礦物摻合料;modulusofrupture斷裂模量
8.4ECCwithGreenFibers
5.PlantFibersAsafamilyofnaturalfibers,plantfibersfromtheagriculturalsectorareconsideredsustainablesincetheyarebiodegradable,renewable,andtherebylesscarbon/cost-intensivethanmostman-madefibers.Themechanicalpropertiesofsuchnaturalfibers,whichvaryduetotheirvariouschemicalcompositionsandmicrostructures,aresubstantiallybelowthoseofPVAfiber,evenaftersomefiberprocessing(e.g.,shapingorheat/seawatertreatment).Plantfibersgenerallyhavelowerdensityandthermalconductivity.Thesepropertiesimplythatplantfiberscanplayacertainroleinnon-structuralelementssuchasbuildingcladdingorfacade,wherenosignificantloadingisexpected.Concernsoflowdurabilityofplantfibersinanalkalineenvironmentinthecementitiousmatrixcanbeaddressedtosomedegreebyeitherproperfibertreatmentormatrixmodification.biodegradable可生物降解的;facade立面
8.4ECCwithGreenFibers
8.4.3FiberHybridization1.PolyethyleneTerephthalate(PET)FiberandPVAFiberPolyethyleneterephthalate(PET)iswidelyusedinplasticproducts,especiallyinthefoodandbeverageindustry.AsignificantamountofPETisdisposedofinlandfillsaswasteatendoflife(e.g.,morethan75%of32megatonsofPETproductintheU.S.endedupinlandfillin2018),eventhoughtherecyclingofPEThasbeengraduallyincreasing.TheembodiedenergyandcostofthehybridPET-PVA-ECCshowedover40%reduction,whileCO2emissionwasreducedbymorethan50%ofthoseoftypicalECCwithPVAfiberonly.ThesegreencredentialscouldbediminishedifadditionalprocessingincludingsurfacetreatmentsareemployedtoimprovethePETfiber.ThesignificantneedtorecyclewastePETfromconsumerproductsprovidesimpetustofurtherinvestigationsofPETfiberandECCcontainin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 馬鞍山學(xué)院《學(xué)習(xí)筑夢科技中國夢》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年三方借款協(xié)議書附借款合同履行監(jiān)督與報告義務(wù)3篇
- 2024年度雙方網(wǎng)絡(luò)安全合作協(xié)議書2篇
- 2024年度云計算環(huán)境下電子支付安全協(xié)議及技術(shù)優(yōu)化合同3篇
- 2025知識產(chǎn)權(quán)合同范本專賣店特許合同
- 2025年伊春道路貨物運輸駕駛員考試
- 2024年度原材料采購與回購合同協(xié)議3篇
- 單位人力資源管理制度精彩匯編
- 2024年標準技術(shù)合作合同書樣本版B版
- 2025機場配電箱合同
- JGJT334-2014 建筑設(shè)備監(jiān)控系統(tǒng)工程技術(shù)規(guī)范
- 2024年網(wǎng)格員考試題庫1套
- 生命科學(xué)前沿技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年蘇州大學(xué)
- 2023年小兒推拿保健師考試真題試卷(含答案)
- 高血壓護理常規(guī)課件
- 心臟介入手術(shù)談話技巧
- 海南省三亞市吉陽區(qū)2022-2023學(xué)年六年級上學(xué)期期末數(shù)學(xué)試卷
- 辦公樓消防改造工程環(huán)境保護措施
- 2023-2024學(xué)年高一下學(xué)期家長會 課件
- 溯源與解讀:學(xué)科實踐即學(xué)習(xí)方式變革的新方向
- 班克街教育方案
評論
0/150
提交評論