![2025屆四川省眉山市重點中學(xué)高三最后一模數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view14/M06/17/00/wKhkGWdjDlyAfyePAAKUdHsB3-c859.jpg)
![2025屆四川省眉山市重點中學(xué)高三最后一模數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view14/M06/17/00/wKhkGWdjDlyAfyePAAKUdHsB3-c8592.jpg)
![2025屆四川省眉山市重點中學(xué)高三最后一模數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view14/M06/17/00/wKhkGWdjDlyAfyePAAKUdHsB3-c8593.jpg)
![2025屆四川省眉山市重點中學(xué)高三最后一模數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view14/M06/17/00/wKhkGWdjDlyAfyePAAKUdHsB3-c8594.jpg)
![2025屆四川省眉山市重點中學(xué)高三最后一模數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view14/M06/17/00/wKhkGWdjDlyAfyePAAKUdHsB3-c8595.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆四川省眉山市重點中學(xué)高三最后一模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列滿足,,則()A. B. C. D.2.已知點、.若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為()A. B. C. D.3.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.4.設(shè)為等差數(shù)列的前項和,若,則A. B.C. D.5.若函數(shù)有且僅有一個零點,則實數(shù)的值為()A. B. C. D.6.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對中國古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人7.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.9.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.10.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.11.已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則()A.0 B.1 C.673 D.67412.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.14.已知橢圓的下頂點為,若直線與橢圓交于不同的兩點、,則當(dāng)_____時,外心的橫坐標(biāo)最大.15.設(shè)(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為________.16.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標(biāo)系中,曲線:.直線經(jīng)過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點,且,求實數(shù)的值.18.(12分)已知橢圓C的中心在坐標(biāo)原點,其短半軸長為1,一個焦點坐標(biāo)為,點在橢圓上,點在直線上,且.(1)證明:直線與圓相切;(2)設(shè)與橢圓的另一個交點為,當(dāng)?shù)拿娣e最小時,求的長.19.(12分)已知橢圓:,不與坐標(biāo)軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標(biāo)為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.20.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.21.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點坐標(biāo)為,圓與直線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.2、C【解析】
設(shè)出點的坐標(biāo),以為底結(jié)合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關(guān)于的方程,求出方程的解,即可得出結(jié)論.【詳解】設(shè)點的坐標(biāo)為,直線的方程為,即,設(shè)點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應(yīng)用,考查運算求解能力,屬于中等題.3、A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用。4、C【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,即,所以,故選C.5、D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進(jìn)而可求得實數(shù)的值,并對的值進(jìn)行檢驗,即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點不為,則該函數(shù)的零點必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時,令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時,函數(shù)與函數(shù)的圖象有三個交點,不合乎題意;②當(dāng)時,,,當(dāng)且僅當(dāng)時,等號成立,則函數(shù)有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數(shù)的零點個數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進(jìn)行檢驗,考查分析問題和解決問題的能力,屬于中等題.6、D【解析】
先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎(chǔ)題.7、A【解析】
作出函數(shù)的圖象,得到,把函數(shù)有零點轉(zhuǎn)化為與在(2,4]上有交點,利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設(shè)過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數(shù)零點的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.8、A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.9、C【解析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.10、B【解析】
因為時針經(jīng)過2小時相當(dāng)于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負(fù)角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負(fù)角,所以經(jīng)過2小時,時針?biāo)D(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負(fù)角的定義以及弧度制,屬于基礎(chǔ)題.11、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進(jìn)行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.12、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補形法的運用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補形法(構(gòu)造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構(gòu)成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.14、【解析】
由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時,,當(dāng)時,.當(dāng)時,函數(shù)取極大值,亦為最大值.故答案為:.【點睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.15、【解析】
求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進(jìn)行求解即可.【詳解】當(dāng)時,,由得:,解得,由得:,解得,即當(dāng)時,函數(shù)取得極大值,同時也是最大值,(e),當(dāng),,當(dāng),,作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個根,當(dāng)或時,方程有2個根,當(dāng)時,方程有3個根,則,等價為,當(dāng)時,,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及.求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題.16、【解析】
連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時,最小,設(shè)點,則,所以當(dāng)時,,則,當(dāng)點的橫坐標(biāo)時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動點到定點的距離的求法,考查學(xué)生的計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】
試題分析:本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,用,化簡表達(dá)式,得到曲線的極坐標(biāo)方程,由已知點和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標(biāo)方程,參數(shù)方程與直角方程的相互轉(zhuǎn)化;2.直線與拋物線的位置關(guān)系.18、(1)見解析;(2).【解析】
(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設(shè)的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點在x軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當(dāng)?shù)男甭蕿?時,,,于是,到的距離為1,直線與圓相切.當(dāng)?shù)男甭什粸?時,設(shè)的方程為,與聯(lián)立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以面積的最小值為1.此時,點在橢圓的長軸端點,為.不妨設(shè)為長軸左端點,則直線的方程為,代入橢圓的方程解得,即,,所以.【點睛】本題考查了直線和橢圓綜合,考查了直線和圓的位置關(guān)系判斷,面積的最值問題,考查了學(xué)生綜合分析,數(shù)學(xué)運算能力,屬于較難題.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)點差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因為線段的中點坐標(biāo)為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因為,所以.【點睛】本題考查中點弦問題的點差法求解,以及利用代數(shù)與幾何關(guān)系求直線方程,涉及韋達(dá)定理的應(yīng)用,屬中檔題.20、(1);(2).【解析】
試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點的橫坐標(biāo),代入兩個曲線的方程,解方程組,可求得;(2)設(shè)與交點的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導(dǎo)得.設(shè)直線與曲線切于點,則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導(dǎo)得.當(dāng)時,恒成立.當(dāng)時,,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調(diào)性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當(dāng)時,在上恒成立,即在上恒成立,記,則,當(dāng)變化時,變化情況列表如下:
3
0
極小值
∴,故“在上恒成立”只需,即.②當(dāng)時,,當(dāng)時,在上恒成立,綜合①②知,當(dāng)時,函數(shù)為增函數(shù).故實數(shù)的取值范圍是考點:函數(shù)導(dǎo)數(shù)與不等式.【方法點晴】函數(shù)導(dǎo)數(shù)問題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點:一個是切點,一個是斜率,切點即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人租房合同的(31篇)
- 2024-2025學(xué)年北京市房山區(qū)高一上學(xué)期期中考試歷史試卷
- 2025年公共設(shè)施配套建設(shè)項目房屋征收合同
- 2025年住宅銷售策劃合同模板規(guī)定
- 2025年官方離婚協(xié)議范本策劃(雙方同意版)
- 2025年全球貿(mào)易合同制定原則及合規(guī)要求解析
- 2025年債權(quán)轉(zhuǎn)讓與貸款合作協(xié)議
- 2025年車輛所有權(quán)變更策劃協(xié)議書模板
- 2025年農(nóng)村土地利用合作協(xié)議
- 2025年人事檔案授權(quán)委托協(xié)議
- 【青島版《科學(xué)》】四年級下冊第一單元1 《運動與力》 教學(xué)設(shè)計
- 加氣站安全管理(最新)精選PPT課件
- 47《心經(jīng)》圖解PPT課件(50頁PPT)
- 污水管線鋪設(shè)施工工藝方法
- 維修保運車間崗位職責(zé)
- 液堿生產(chǎn)工序及生產(chǎn)流程敘述
- 三年級學(xué)生《成長記錄》模板
- 好書推薦——《三毛流浪記》
- 方菱F2100B中文系統(tǒng)說明書
- 人教版動手動腦學(xué)物理答案 八下
- 九宮格數(shù)獨題目(打印版)
評論
0/150
提交評論