版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆天津市軍糧城第二中學高考數(shù)學五模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.122.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.43.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要4.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-35.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.6.已知三棱柱()A. B. C. D.7.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.58.函數(shù)的圖像大致為().A. B.C. D.9.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.1210.函數(shù)圖象的大致形狀是()A. B.C. D.11.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.12.用1,2,3,4,5組成不含重復數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同五位數(shù)的個數(shù)是()A.48 B.60 C.72 D.120二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,若雙曲線經(jīng)過點(3,4),則該雙曲線的準線方程為_____.14.已知函數(shù),若在定義域內(nèi)恒有,則實數(shù)的取值范圍是__________.15.曲線在點處的切線方程為______.16.某市高三理科學生有名,在一次調(diào)研測試中,數(shù)學成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數(shù)為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)是數(shù)列的前項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列中最小的項.18.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.19.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點.(1)已知點在棱上,且平面平面,試確定點的位置并說明理由;(2)設點是線段上的動點,當點在何處時,直線與平面所成角最大?并求最大角的正弦值.20.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數(shù)的取值范圍;(2)求證:.21.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學生的成績,統(tǒng)計結(jié)果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624(Ⅰ)若測試的同學中,分數(shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調(diào)整安全教育方案?附表及公式:,其中.22.(10分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B2、C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數(shù)的對稱性的應用,屬于中檔題.3、B【解析】
根據(jù)充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結(jié)論.4、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-25、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題6、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=7、A【解析】
根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調(diào)遞減;當時,,單調(diào)遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,零點存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.8、A【解析】
本題采用排除法:由排除選項D;根據(jù)特殊值排除選項C;由,且無限接近于0時,排除選項B;【詳解】對于選項D:由題意可得,令函數(shù),則,;即.故選項D排除;對于選項C:因為,故選項C排除;對于選項B:當,且無限接近于0時,接近于,,此時.故選項B排除;故選項:A【點睛】本題考查函數(shù)解析式較復雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號的正負等有關性質(zhì)進行逐一排除是解題的關鍵;屬于中檔題.9、A【解析】
由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.10、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.11、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.12、A【解析】
對數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個數(shù)字相鄰,利用分類計數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個數(shù)字出現(xiàn)在第位時,同理也有個數(shù)字出現(xiàn)在第位時,數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個故滿足條件的不同的五位數(shù)的個數(shù)是個故選【點睛】本題主要考查了排列,組合及簡單計數(shù)問題,解題的關鍵是對數(shù)字分類討論,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
代入求解得,再求準線方程即可.【詳解】解:雙曲線經(jīng)過點,,解得,即.又,故該雙曲線的準線方程為:.故答案為:.【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎題.14、【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)圖象可將原題轉(zhuǎn)化為恒成立問題,湊而可知的圖象在過原點且與兩函數(shù)相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結(jié)合分母不為零的條件可最終確定的取值范圍.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)圖象可知:,恒成立可轉(zhuǎn)化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過原點且與兩函數(shù)相切的兩條切線之間.設過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;設過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數(shù)的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導數(shù)幾何意義應用中的過一點的曲線切線的求解方法;關鍵是能夠結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)圖象將問題轉(zhuǎn)化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.15、【解析】
對函數(shù)求導,得出在處的一階導數(shù)值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數(shù)的導函數(shù)求函數(shù)在切點處的切線方程,關鍵在于求出在切點處的導函數(shù)值就是切線的斜率,屬于基礎題.16、【解析】
由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態(tài)分布曲線,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由可得出,兩式作差可求得數(shù)列的通項公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數(shù)列的通項公式為;(2)由(1)得,則.當時,,即,;當時,,即,.所以,數(shù)列的最小項為.【點睛】本題考查利用與的關系求通項,同時也考查了利用數(shù)列的單調(diào)性求數(shù)列中的最小項,考查推理能力與計算能力,屬于中等題.18、(1);(2).【解析】
(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結(jié)論可求得關于的表達式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積的取值范圍是.【點睛】本題考查直線與橢圓的綜合應用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關鍵是能夠?qū)⑺竺娣e表示為關于某一變量的函數(shù),將問題轉(zhuǎn)化為函數(shù)值域的求解問題.19、(1)為中點,理由見解析;(2)當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點,可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系,利用向量法求出當點在線段靠近的三等分點時,直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點,證明如下:分別為中點,又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點,分別以,,所在直線為、、軸建立空間直角坐標系則,設直線與平面所成角為,則取平面的法向量為則令,則所以當時,等號成立即當點在線段靠近的三等分點時,直線與平面所成角最大,最大角的正弦值.【點睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學生的直觀想象與運算求解能力.20、(1);(2)見解析【解析】
(1)利用導數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調(diào)遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數(shù)與導數(shù)綜合,考查了學生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學運算的能力,屬于較難題.21、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調(diào)整安全教育方案.【解析】
(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用超幾何分布的計算公式,計算出的分布列并求得數(shù)學期望.(III)由(II)中數(shù)據(jù),計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為:是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版校企合作數(shù)字內(nèi)容制作與傳播技能培訓協(xié)議2篇
- 二零二五年度股權代持資產(chǎn)監(jiān)管委托協(xié)議3篇
- 2025版金屬礦床探礦權轉(zhuǎn)讓合同協(xié)議3篇
- 2025版消防技術服務與咨詢合同3篇
- 二零二五年度人工智能教育平臺個人技術入股合同2篇
- 垃圾食品我不吃安全教育
- 二零二五年度智能家居系統(tǒng)定制個人房屋裝修合同范本2篇
- 二零二五版物業(yè)服務行業(yè)員工保密協(xié)議規(guī)范3篇
- 二零二五年度農(nóng)業(yè)產(chǎn)業(yè)股權投資及投資合同規(guī)范3篇
- 二零二五版現(xiàn)代學徒制協(xié)議書-新能源電動汽車研發(fā)與制造3篇
- 簡易三方換地協(xié)議書范本
- 2025屆廣東省深圳羅湖區(qū)四校聯(lián)考九上數(shù)學期末綜合測試試題含解析
- 飛鼠養(yǎng)殖技術指導
- 2024輸血相關知識培訓
- 2023年四川省綿陽市中考初中學業(yè)水平考試語文試題【含答案】
- 正大天虹方矩管鍍鋅方矩管材質(zhì)書
- 山東省泰安市2022年初中學業(yè)水平考試生物試題
- 受賄案例心得體會
- 人教A版高中數(shù)學選擇性必修第一冊第二章直線和圓的方程-經(jīng)典例題及配套練習題含答案解析
- 圖書館學基礎簡明教程
- 畢業(yè)設計(論文)-液體藥品灌裝機的設計與制造
評論
0/150
提交評論