惠州經(jīng)濟職業(yè)技術(shù)學院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學年第一學期期末試卷_第1頁
惠州經(jīng)濟職業(yè)技術(shù)學院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學年第一學期期末試卷_第2頁
惠州經(jīng)濟職業(yè)技術(shù)學院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學年第一學期期末試卷_第3頁
惠州經(jīng)濟職業(yè)技術(shù)學院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學年第一學期期末試卷_第4頁
惠州經(jīng)濟職業(yè)技術(shù)學院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁惠州經(jīng)濟職業(yè)技術(shù)學院《數(shù)據(jù)挖掘?qū)崙?zhàn)》

2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)可視化有助于直觀理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用餅圖,因為它能清晰展示各地區(qū)銷售額占比B.采用折線圖,以反映銷售額隨地區(qū)的變化趨勢C.運用柱狀圖,直觀比較不同地區(qū)銷售額的差異D.選擇箱線圖,全面展示銷售額的分布特征,包括四分位數(shù)和異常值2、在數(shù)據(jù)分析中,大數(shù)據(jù)技術(shù)為處理海量數(shù)據(jù)提供了支持。假設(shè)要處理一個PB級別的數(shù)據(jù)集,以下關(guān)于大數(shù)據(jù)技術(shù)的描述,哪一項是不正確的?()A.Hadoop生態(tài)系統(tǒng)中的HDFS用于分布式存儲數(shù)據(jù),能夠擴展到大規(guī)模的集群B.MapReduce編程模型可以實現(xiàn)并行處理,提高數(shù)據(jù)處理的效率C.大數(shù)據(jù)技術(shù)只適用于處理結(jié)構(gòu)化數(shù)據(jù),對于非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)無能為力D.實時處理大數(shù)據(jù)可以使用SparkStreaming或Flink等框架3、在數(shù)據(jù)預處理中,處理異常值是重要的環(huán)節(jié)。假設(shè)我們有一個包含員工工資的數(shù)據(jù)集,以下關(guān)于異常值處理的描述,正確的是:()A.直接刪除異常值,不進行任何進一步的分析B.異常值一定是錯誤的數(shù)據(jù),必須修正C.分析異常值產(chǎn)生的原因,根據(jù)具體情況決定處理方式D.異常值對數(shù)據(jù)分析沒有任何影響,無需關(guān)注4、在進行數(shù)據(jù)分析時,需要考慮數(shù)據(jù)的時效性和動態(tài)性。假設(shè)要分析實時的交通流量數(shù)據(jù),以優(yōu)化交通信號燈控制策略。以下哪種數(shù)據(jù)分析方法在處理這種實時動態(tài)數(shù)據(jù)時更能及時提供有效的決策支持?()A.流數(shù)據(jù)分析B.批量數(shù)據(jù)分析C.離線數(shù)據(jù)分析D.以上方法效果相同5、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的應用領(lǐng)域有很多,其中金融領(lǐng)域是一個重要的應用領(lǐng)域。以下關(guān)于數(shù)據(jù)挖掘在金融領(lǐng)域的應用,錯誤的是?()A.數(shù)據(jù)挖掘可以用于風險評估和信用評分B.數(shù)據(jù)挖掘可以用于市場預測和投資決策C.數(shù)據(jù)挖掘可以用于客戶關(guān)系管理和營銷活動D.數(shù)據(jù)挖掘的結(jié)果可以直接用于金融交易,無需人工干預6、在數(shù)據(jù)分析項目中,與利益相關(guān)者的溝通和理解需求至關(guān)重要。假設(shè)你正在為一家企業(yè)進行數(shù)據(jù)分析,以下關(guān)于需求溝通的方法,哪一項是最有效的?()A.使用大量的技術(shù)術(shù)語和復雜的圖表來解釋分析過程B.以通俗易懂的語言,結(jié)合實際案例說明分析的目標和結(jié)果C.只與技術(shù)人員溝通,忽略非技術(shù)背景的利益相關(guān)者D.不與利益相關(guān)者溝通,自行決定分析的方向和重點7、對于一個包含時間戳的數(shù)據(jù),若要按照時間順序進行分組并計算每組的統(tǒng)計量,以下哪種方法在Python中較為便捷?()A.使用pd.Grouper函數(shù)B.自定義函數(shù)進行分組C.先對時間戳進行排序,再進行分組D.以上方法都可行8、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要根據(jù)客戶的消費行為將其分為高價值客戶和低價值客戶,以下關(guān)于分類算法選擇的描述,正確的是:()A.隨意選擇一種分類算法,不考慮數(shù)據(jù)的特征和算法的適用性B.只關(guān)注分類算法的準確率,不考慮召回率和F1值等其他評估指標C.深入分析數(shù)據(jù)特征和業(yè)務(wù)需求,比較不同分類算法的性能,如決策樹、支持向量機、神經(jīng)網(wǎng)絡(luò)等,并選擇最適合的算法,同時結(jié)合多種評估指標進行綜合評價D.認為分類算法的參數(shù)設(shè)置不重要,使用默認參數(shù)即可9、在數(shù)據(jù)分析中,若要比較不同組數(shù)據(jù)的離散程度,以下哪個指標可以使用?()A.方差B.均值C.中位數(shù)D.眾數(shù)10、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的挑戰(zhàn)有很多,其中數(shù)據(jù)質(zhì)量問題是一個重要的挑戰(zhàn)。以下關(guān)于數(shù)據(jù)質(zhì)量問題的描述中,錯誤的是?()A.數(shù)據(jù)質(zhì)量問題可能會導致數(shù)據(jù)挖掘結(jié)果的錯誤和不可靠B.數(shù)據(jù)質(zhì)量問題可以通過數(shù)據(jù)清洗和驗證等方法來解決C.數(shù)據(jù)質(zhì)量問題只與數(shù)據(jù)的來源有關(guān),與數(shù)據(jù)挖掘的算法和技術(shù)無關(guān)D.數(shù)據(jù)質(zhì)量問題需要在數(shù)據(jù)挖掘的整個過程中進行關(guān)注和處理11、在數(shù)據(jù)分析的特征工程中,假設(shè)要從原始數(shù)據(jù)中提取有意義的特征以提高模型的性能。原始數(shù)據(jù)包含大量的文本和數(shù)值信息。以下哪種特征提取方法可能更有助于提升模型的準確性?()A.詞袋模型,將文本轉(zhuǎn)換為向量B.主成分分析,降低數(shù)據(jù)維度C.特征選擇,挑選重要的特征D.不進行特征工程,直接使用原始數(shù)據(jù)12、在數(shù)據(jù)挖掘中,若要對圖像數(shù)據(jù)進行分析,以下哪種技術(shù)可能會被用到?()A.深度學習B.決策樹C.關(guān)聯(lián)規(guī)則D.因子分析13、在數(shù)據(jù)清洗過程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對異常值進行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再決定處理方式14、數(shù)據(jù)分析中的文本分類任務(wù)需要對大量文本進行自動分類。假設(shè)要對新聞文章進行分類,如政治、經(jīng)濟、體育等類別,文本內(nèi)容多樣且語言表達復雜。以下哪種方法在處理這種多類別文本分類問題時更能提高分類準確性?()A.使用深度學習模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機器學習分類算法C.依賴人工制定的分類規(guī)則D.隨機分類15、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過PCA進行降維時,以下哪個說法是正確的?()A.降維后的主成分數(shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過程會丟失部分數(shù)據(jù)信息D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述貝葉斯分類算法的原理和特點,舉例說明其在不確定性情況下的分類優(yōu)勢,并與其他常見分類算法進行比較。2、(本題5分)在數(shù)據(jù)分析中,如何處理高維數(shù)據(jù)?請介紹降維方法,如主成分分析、t-SNE等,并分析它們的優(yōu)缺點。3、(本題5分)描述數(shù)據(jù)挖掘的概念和主要流程,包括數(shù)據(jù)預處理、挖掘算法選擇、結(jié)果評估等環(huán)節(jié),并解釋每個環(huán)節(jié)的關(guān)鍵要點和作用。4、(本題5分)解釋數(shù)據(jù)分析中的因果推斷的概念和方法,說明其與相關(guān)性分析的區(qū)別,并舉例說明在實際問題中的應用。三、論述題(本大題共5個小題,共25分)1、(本題5分)在房地產(chǎn)行業(yè),房屋交易數(shù)據(jù)、市場趨勢數(shù)據(jù)等不斷更新。探討如何利用數(shù)據(jù)分析方法,比如房價預測模型、投資回報率分析等,為購房者和投資者提供決策支持,同時研究在數(shù)據(jù)準確性驗證、政策影響因素和市場波動不確定性方面所面臨的困難及解決途徑。2、(本題5分)在餐飲外賣領(lǐng)域,訂單數(shù)據(jù)、配送數(shù)據(jù)和用戶評價數(shù)據(jù)等日益增多。分析如何借助數(shù)據(jù)分析手段,如配送效率提升、餐廳菜品優(yōu)化等,提高餐飲外賣服務(wù)質(zhì)量,同時探討在數(shù)據(jù)隱私保護、配送人員管理和市場競爭激烈方面可能面臨的問題及應對方法。3、(本題5分)社交媒體營銷活動中,如何通過數(shù)據(jù)分析來評估活動效果、優(yōu)化投放策略和提升品牌影響力?請詳細分析活動數(shù)據(jù)的關(guān)鍵指標、分析方法和基于數(shù)據(jù)的決策調(diào)整。4、(本題5分)探討在社交媒體的輿情監(jiān)測和危機管理中,如何運用數(shù)據(jù)分析及時發(fā)現(xiàn)負面輿情,制定應對策略,維護企業(yè)和品牌形象。5、(本題5分)在市場營銷活動中,數(shù)據(jù)分析能夠精準定位目標客戶和評估營銷效果。請詳細論述如何利用數(shù)據(jù)分析進行市場細分、目標客戶畫像和營銷活動的投資回報率分析,分析所使用的數(shù)據(jù)分析方法和工具,以及如何根據(jù)分析結(jié)果調(diào)整營銷策略。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)一家家具品牌的定制沙發(fā)業(yè)務(wù)收集了銷售數(shù)據(jù),包括沙發(fā)款式、面料材質(zhì)、尺寸規(guī)格、價格、客戶需求等。研究沙發(fā)款式和面料材質(zhì)對價格和客戶需求滿足程度的影響。2、(本題10分)某在線醫(yī)療平臺的慢性病管理數(shù)據(jù)包含患者信息、疾病類

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論